
UCRL-ID-136921

Parametric Grid Information
in the DOE Knowledge Base:
Data Preparation, Storage,
and Access

J. R. Hipp, C. J. Young, S. G. Moore, E. R. Shepherd, C.A.
Schultz and S. C. Myers

October 1,1999

U.S. Department of Energy

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

SAND99-2277
Unlimited Release

Printed October 1999

Parametric Grid Information
in the DOE Knowledge Base:

Data Preparation, Storage, and Access

James R. Hipp
Decision Support Systems Department

Chris J. Young
Geophysical Technology Department

Susan G. Moore
Decision Support Systems Department

Ellen R. Shepherd
Decision Support Systems Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 871851138

Craig A. Schultz

Stephen C. Myers

Lawrence Livermore National Laboratories
P.O. Box 808

Livermore, CA 94550

Abstract
The parametric grid capability of the Knowledge Base provides an efficient, robust way to

store and access interpolatable information which is needed to monitor the Comprehensive
Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational
monitoring systems, we use a new approach which combines the error estimation of kriging with
the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three
basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data
preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of
value and error estimates in the Data Access step. This basis includes a set of nodes and their con-
nectedness, collectively known as a tessellation, and the corresponding values and errors that map
to each node, which we call surfaces. In many cases, the raw data point distribution is not suffi-
ciently dense to guarantee accurate error estimates from the NNI, so the original data set must be
densified using a newly developed interpolation technique known as Modz$ed Bayesian Kriging.
Once appropriate kriging parameters have been determined by variogram analysis, the optimum
basis for NNI is determined in a process we call mesh re3nement, which involves iterative kriging,
new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis
has been calculated which will fit the kriged values within a specified tolerance. In the data stor-
age step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary
flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access
step, a client application makes a request for an interpolated value, which triggers a data fetch
from the Knowledge Base through the libKB1 interface, a walking triangle search for the contain-
ing triangle, and finally the NNI interpolation.

We demonstrate the entire process using a synthetic data set of seismic travel times for an
evenly spaced grid of 12 1 events which require source-to-receiver-specific path corrections to be
accurately located. To create the test set, predicted IASP arrival times for three International
Data Center primary network stations were perturbed using values taken from separate, randomly
generated, order 50 spherical harmonic surfaces. 30 ground truth points were then chosen ran-
domly within the grid area to use as ground truth data points to develop travel time corrections.
After data preparation and data storage, the resultant parametric grid for the travel time correc-
tions was accessed by the event location code EvLoc. For the seven test events which were co-
located with ground truth events, mislocations were reduced from an average of 42.7 km to 2.1
km, and the semimajor axes of the error ellipses were reduced from 141.9 km to 50.9 km. Overall,
the average event mislocation reductions were much smaller -- from 58.8 km to 47.0 km -- reflect-
ing the limits imposed on the interpolation by the relatively small number of ground truth events.
This dependence of interpolated value accuracy and error estimate size on proximity to ground
truth points is a typical result, and reflects the underlying kriging process which bases the interpo-
lation of correction information on the spatial correlation characteristics derived from the data
itself. This is a marked improvement over surface fitting approaches which suffer either from
overfitting or under-fitting and provide poor if any error estimation for interpolated values.

Acknowledgments

d Helpful reviews of this report were provided by Randy Simons and Eric Chael. This
work was supported by the United States Department of Energy under Contract DE-
AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corpora-

a
tion, a Lockheed Martin Company, for the United States Department of Energy.

(This page intentionally left blank)

Contents

1

a ,
A . 2

I I

rl

II 1

4

I

Abstract ... 4

Acknoivledgments ... 5

Contents .. 7

Figures ... 9

Introduction ... 11

Parametric Grids in the Knowledge Base ... 13
Kriging .. 14

Kriging Interpolation Methodology .. 15
Variogram Analysis ... 16
Variograms And Covariance .. 18
Modified Bayesian Kriging ... 18

Tessellation ... 21
Mesh Refinement .. 23

Database Storage (DS) ... 24
Merging with Existing Global Data .. 24
Data Storage ... 25

Data Access (DA) .. 26
libISB1 Functionality ... 26
Data Retrieval ... 27

Tessellation And Surface Object Abstraction .. .28
Surface Fetch Initialization (SFI) .. 29
Data Cluster Access .. 29
Surface Association ... 30

Containing Triangle Search .. 31
Natural-Neighbor Interpolation (NNI) ... 32

Summary .. 35

Example: Seismic Travel Time Correction Data.. .. 37
Data Set .. 38
Re-Locations without Path Corrections ... 39
Ground Truth Events .. 39
Data Processing ... 40

Variogram Analysis .. 40
Kriging .. 40
Mesh Refinement .. 41

Relocation Using Ground Truth Information42

Conclusions ... 45 ..

References ... 47

7

Appendix A: Modified Bayesian Kriging .. .75
A- 1 Introduction .. 75
A-2 Derivation .. 76

Appendix B: Mesh Refinement .. 85
B-l Mesh Refinement Methodology85
B-2 Multiple Surface Representation .. 92
B-3 Relative Error Effects On Mesh Density .. .94
B-4 Summary .. 95

Appendix C: Walking Triangle Search Algorithm ... 105
Appendix D: Gradient-Modified Natural-Neighbor Interpolation .. .113

D- 1 Natural-Neighbor Determination .. .114
D-2 Natural-Neighbor Weight Determination115
D-3 Gradient Modification ... 120

Appendix E: Matlab Packages .. 133
E-l Variogram Analysis .. .133
E-2 Kriging ... 133
E-3 Mesh Refinement ... 134

Appendix F: Locator Parameters for KBI .. .135

Distribution ... 137

8

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 2 1.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Figures
The Knowledge Base parametric grid model.. .. .49
Densifying data for fast interpolation of value and error estimates50
Observed variogram with fitted theoretical variogram51
Variogram vs. covariance5 2
Incremental node insertion ... 53
Mesh refinement process and data flow diagram..54
Abstraction of KBase storage for multiple tessellations..55
Abstraction Of KBase tessellation components..56
Surface Fetch Initialization (SFI) ... 57
Data Cluster Access .. .58
SF1 Surface Data Cluster Access .. .59
Surface Association .. .60
Walking Triangle Search .. 61
Natural-Neighbor weight determination .. 62
Base Model + Corrections approach to improving event locations6 3
Stations and region used for synthetic travel time example..64
Synthetic test events and perturbation surface for GERES..65
Re-locations of 12 1 perturbed events, no model error..66
Re-locations of 121 perturbed events, IASP 1 model error 67
The 30 randomly selected ground truth points68
Variograms for CMAR, GERES, and ZAL .. .69
Kriged correction and variance surfaces for GERES..70
Final tessellation and node density for 10% error (maximum).7 1
Comparison of Kriged and NNI surfaces for GERES72
Relocations of 121 events, KBI used ... 73

Figure A- 1. Typical Variogram (with zero nugget) ... 79
Figure A-2. Normalized blending function ... 82
Figure A-3. Typical Region Boundary Blending “Patch” ... 84
Figure B-l. Initial Mesh Construction (Step 0) .. .97
Figure B-2. New Node Insertion And Tessellation (Step 1). .. .98
Figure B-3. Length-Weighted Laplacian Smoothing (Step 2) ... 99
Figure B-4. Smoothing (Step 2). .. 100
Figure B-5. Triangle Group Surface Roughness .. 101
Figure B-6. Multiple Surface Representation On A Single Tessellation..102
Figure B-7. Relative Error Effect On Mesh Density .. .103
Figure C- 1.. Triangle Connectivity And Edge Orientation ... 109
Figure C-2. Search Point “Left” / “Right” Classification .. 109
Figure C-3. Edge Criteria For Search Point “Leftness” Or “Rightness” 110
Figure C-4. Walking Triangle Example.. .. .l 11
Figure C-5. Spherical Surface “Leftness” and “Rightness” Test.. -112
Figure D- 1. Interpolation Points Natural-Neighbor Nodes And Triangles..123

.

9

Figure D-2. Natural-Neighbor Edge Definitions And Ordering..124
Figure D-3. Virtual Interpolation Point Triangles .. .125
Figure D-4. Voronoi Diagrams With and Without Interpolation Point.126
Figure D-5. Nodal Weight Definition: Overlapping Voronoi Polygons..127
Figure D-6. Sub-Triangle Weight Calculation Method .. .128
Figure D-7. Boundary Edge Matching With Virtual Voronoi Vertices..129
Figure D-8. Natural-Neighbor Weight Determination..130
Figure D-9. Typical Modified Gradient Blending Function..13 1
Figure D-10. Natural-Neighbor Basis Functions w/w0 Gradient Modification..13 2

10

1 Introduction
To improve the U.S. National Data Center (USNDC) capability to monitor a Com-

prehensive Test Ban Treaty (CTBT), researchers at the U.S. Department of Energy
(DOE) nation a 11 b a oratories are collaborating to develop a collection of data and
associated access tools collectively known as the Knowledge Base. The Knowledge
Base (hereafter KBase) will consist of many types of information which will improve
the performance of the four principle monitoring technologies -- seismic, hydroacous-
tic, infrasonic, and radionucleic -- at various regions of interest around the world.
The number of different data sets in the KBase is expected to be huge, but viewed
from an information representation perspective, there are only four basic types of
data: reference event information, parametric grid information, contextual informa-
tion, and supporting information (Shepherd et al., 1998). This report focuses on the
access and use of the second of these types.

c

a .

9

Parametric grid information is interpolatable data associated with particular geo-
graphic locations (i.e. a grid) on the earth. The interpolation part of the definition is
important: not all data sets which have geographic coordinates should be interpo-
lated. Examples of proper, interpolatable parametric grid data sets are traveltime
corrections for any of the sensor technologies. The grid of locations for which infor-
mation has been specified may be regular or irregular, depending on the method of
collection or generation of data. Regardless, the KBase information derived from
these grids must meet the USNDC operational requirements, i.e. the interpolated
values must: 1) include a robust error estimate; 2) be first and second order continu-
ous; and 3) be delivered to applications “quickly” (the precise speed requirement
depends on the application).

In this report we describe in detail a general method for preparing, storing, and
accessing interpolatable information which can insure that these requirements are
met for any data set. The technique meets the requirements by combining the error
estimation properties of kriging with the fast and robust interpolation properties of
Natural Neighbor Interpolation. To clarify the use of the technique, we provide an
example using a synthetic travel time correction data set, and show how use of the
resulting KBase data set provides improved locations and appropriate error esti-
mates.

11

(This page intentionally left blank)

2 Parametric Grids in the Knowledge Base
The end-to-end model (Figure 1) for inputting raw data to create a parametric

grid data set and using it to output interpolated values to an applicationconsists of
three basic parts: data preparation (DP), data storage CDS), and data access(DA).
The first two, which we collectively refer to as KnowLedge Base population, are one-
time setup processes which are not required to be fully automated and, if necessary,
may be computationally expensive. This is not true of DA, which involves serving the
KBase data requests from client applications, often with stringent performance
requirements. KBase access must meet the performance requirements for these
requests, which in many cases imply sub-second response times. Thus, DA processes
must be very fast.

We do not discuss raw data collection here, as we assume that data sets have
already been assembled by contributors to the KBase. Each interpolatable.raw data
set must include for each data point a geographic location (latitude, longitude, and
depth), a value, and an estimate of the error or variance associated with that value.
In addition, if possible, an estimate of the spatial range of influence of each point
should be provided (see section 2.1.1 below). Though an important topic, we also
choose not to discuss the specifics of client applications that interface with the func-
tional implementation of this research in order to limit the breadth of the document.
We do provide a brief description of the Application Program Interface (API) to the
Knowledge Base, libKB1, in section 2.3.1 below.

In the remainder of this first part of the document, we discuss in greater detail
DP, DS, and DA, respectively, breaking each down into sub-processes as appropriate.
In the DP section, we discuss the kriging interpolation method and associated modi-
fications for generating continuous value surfaces from raw data. In addition, we
describe the tessellation method whereby the continuous value surface is converted
to a discrete mesh for purposes of achieving high performance numerical interpola-
tion. Finally, we discuss the mesh refinement process by which the generated tessel-
lation is made to optimally represent the continuous kriged value surface as
accurately as desired with as few discrete nodes as practicable. In the DS section we
define the process by which new data and their resulting refined mesh value surfaces
are merged with existing data in the KBase in cases where regional overlaps occur.
This section also describes the types of data stored by the KBase and the underlying
relationships between the data types. In the final section, DA, we cover the interface
used by client applications to access data from the KBase as well as the actual meth-
ods and strategies used to perform the data retrieval. This section defines the major
points of the discrete triangle searcher and the Natural-Neighbor Interpolator which
are provided in the client application interface.

2.1 Data Preparation (DP)

DP is required because for many data sets it is not possible to quickly produce
interpolated values with high quality error estimates directly from the raw data

13

points. Fast interpolation methods such as Natural-Neighbor Interpolation (NNI,
described below) can provide interpolated values quickly but have no robust mecha-
nism for error estimation. Error limits can be interpolated just like the values, but
unless the spacing of the raw data is very small and/or the gradient of the actual sur-
face is gentle, these linear estimates will be poor. Kriging methods (discussed in the
following sections) provide a convenient means to interpolate at any point and get a
high-quality error estimate reflecting the spatial correlation characteristics of the
underlying process, but, when many data points are included, they are too slow to be
used in fulfilling the real-time data acquisition requests routinely made of the
KBase.

To meet both the robust error and speed requirements, we use a hybrid technique
in which we employ a modified kriging method to produce a densified set of points
with value and error estimates which then serves as a basis for NNI, a basis which is
sufficiently dense where needed to insure good value and error estimates. The opti-
mal basis for NNI should be a set of points whose density distribution is proportional
to the surface curvature of the data process which was sampled in the raw data set.
Choosing this set ensures that any errors associated with the linear interpolation
are small. As we shall see, the optimal basis should also have the points arranged so
as to form well-behaved Delaunay triangles (Delaunay, 1934). Delaunay triangles are
required to properly perform the NNI.

Generally, speaking DP consists of two main activities. The first, surface genera-
tion, is used to provide sampling at additional locations besides the raw data points.
As previously mentioned we use a Modified Bayesian Kriging (MBK) technique to
generate these value surfaces. The second activity, mesh generation, is used to spec-
ify the connectivity, or tessellation, of all of the data points which is required for
searching for natural neighbors and for calculating the weights of the neighbors for
interpolation. When performing mesh generation, the tessellation process uses the
values of the kriged surface in an iterative manner to refine the final grid into an
NNI mesh that optimally represents the kriged surface to within a prescribed toler-
ance using a minimal set of grid points. This combined process is called mesh refine-
ment. In the next few paragraphs we shall consider each activity -- kriging,
tessellating, and mesh refinement -- in order.

2.1 .l Kriging
For many KBase clients it is not sufficient to get the best available estimate of a

parameter, we must also know how accurate each estimate is thought to be. For
example, in the case of interpolating travel time correction data, the corrections will
change the location regardless of their accuracy, so it is essential to know the error
associated with the corrections to evaluate the new location. If error information is
provided by the KBase, it can be incorporated into the error ellipse routine associ-
ated with the location algorithm and thus be reflected in the size of the error ellipse
associated with the new location.

14

(EQ 1)
i=l

where -?j and wi are the position and weight of the ith point, respectively. Kriging
has two important features that distinguish it from other linear interpolation meth-
ods, however. First, in kriging the weights are determined such that the variance of
the predicted error is minimized. Second, and of critical importance for our purposes,
in addition to the estimated value at the unknown point, kriging also produces an
estimate of the error associated with the interpolated value.

To properly krig a specified data set using the MBK method, one should first per-
form a variogram analysis of the data to determine the data’s spatial correlation
characteristics. Next, the variogram analysis is used to establish the data’s covari-
ante characteristics. Finally, the data covariance is input into the kriging algorithm,
along with the raw data and associated data measurement errors, and the kriging
operation is executed to generate continuous value and error surfaces, i.e. values and
error estimates at any location.

In its standard form, kriging assumes that the underlying processes are spatially
invariant and that the non-spatially correlated error (i.e. measurement error) associ-
ated with each data point is the same. Both constraints are problematic for our pur-
poses and so we use a modified version of the algorithm which allows them to be
removed (Schultz et al., 1998). In the modified version, each point can have a unique
measurement error and the modeled processes can be spatially variant. The MBK
method is discussed in section 2.1.1.4 below and in greater detail in Appendix A.

2.1 .1.2 Variogram Analysis

To krig a data set, one should first perform variogram analysis of the data to
determine the spatial correlation parameters. To do this for a given data set, we first
create an experimental variogram and then fit it with a theoretical variogram, which
will ultimately be used in the kriging. The experimental variogram, l?(h), is made by
calculating the squared value differences for all combinations of points, binning
these by interpoint distance h, and then plotting the results as a function of h, i.e.

C[zi - zg*

Jw= iy i 2N,, (EQ 2)
IJ

where Nij is the number of pairs of ij points in the h distance bin, and we have writ-
ten Zi as a shorthand for Zi(2i) for compactness. Technically, if the l/2 factor is used
the result is a semi-variogram (multiplying by two gives the variogram). However,
the difference is not important so long as one or the other is used consistently, and
often the term variogram is used for either. Regardless, once the experimental plot
has been made, the theoretical variogram is determined by fitting the trend of the

16

4
data with a mathematical function which is described with four parameters: the
nugget, the siZZ, the range, and the function family (see Figure 3). Variogram analysis
is a topic unto itself, and is covered at length in many geostatistical text books (see
e.g. Kitanidis, 1997).

% .-
4

!I

9

II .-m

rl

II

II

In theory, the variogram should stabilize to some constant value (the sill value)
with distance as the limit of spatial correlation is reached (the range). If the geomet-
ric distribution of the points has relatively few long inter-point distances, however,
the variogram may not stabilize and the sill value and range may be difficult to
determine. This is because the variogram bins at large distances may have too few
observations to form a representative average value. To prevent m&-interpretation,
we recommend aLways comparing the experimental variogram with a plot of the
number of distance pairs per bin. Bins with small numbers of samples should be dis-
regarded if possible.

Determination of the nugget value can be equally ambiguous if the point set has
relatively few short inter-point distances. The nugget value is caused by the presence
of random (i.e. non-spatially correlated) error in the data. Any portion of the values of
Xi due to such a process will only correlate when comparing a point with itselfi for
comparisons with all other points no matter how close, the error will not correlate.
Thus the effect on the variogram is to introduce a step discontinuity between 0 dis-
tance and the first finite distance. The nugget value, which is the variance (i.e.
square) of the non-correlated error, is defined by the apparent intercept of the theo-
retical variogram with the Y axis, ignoring the drop off at zero. distance (Figure 3).
Accurate determination of this intercept is dependent on the number of small inter-
point distance combinations. In many data sets, this information may come from a
single cluster in which case one should use caution in generalizing the results as the
nugget for the entire data set, though there may be no better alternative. If the Xi
have very little measurement error then there will be no discernible discontinuity
and the nugget will be zero.

The choice of the function family is perhaps the most subjective of all of the theo-
retical variogram parameters. Any mathematical function which fits the basic trend
between the nugget at zero distance and the sill at the range distance couZd be
acceptable, which leads to an infinite number of possibilities ranging from a simple
linear fit to a much more detailed fit such as a spline. Fortunately, there are a few
guidelines to follow in choosing a function family. First, unless the experimental var-
iogram has highly resolved detail which clearly supports the use of a complex func-
tion, it is better to use a simple one. Using a simple, smooth function will lead to
smoother, simpler kriged surfaces. Also, complexities in the function shape may lead
to instabilities in the matrix inversion required for kriging. Second, functions with
zero or near-zero slope at small distances can lead to kriging instabilities for some
data sets. Such functions imply perfect or near-perfect correlation over some finite
range of distance. If the nuggets (i.e. uncorrelated errors> for clustered data points
are small and the observed values at the points are dissimilar, the theoretical corre-
lation will be incompatible with the observations and problems may occur. In such

17

cases, we recommend either shortening the range of the zero slope portion of the var-
iogram, increasing the slope, or both.

To summarize, the fitting of an experimental variogram with a theoretical vario-
gram is a highly subjective process wherein the researcher must find parameters
which fit but do not overfit the data, and which do not lead to instabilities in the
kriging process. Adhering to the simple guidelines prescribed above will generally
produce satisfactory results.

2.1 .I .3 Variograms And Covariance

For reasons we shall discuss below, we choose to work with covariances rather
than variograms. Fortunately, the relationship between a theoretical variogram and
the covariance is straightforward:

l?(h) = cov(0) - cov(h) (EQ 3)

where T(h) is the variogram at distance h, cov(h) is the covariance at distance h, and
cov(O> is the covariance at distance 0. The transformation is illustrated in Figure 4.
Note that the nugget leads to a discontinuous decrease in covariance (variance)
beyond zero distance. The covariance value at the first finite distance beyond zero is
equal to the variogram sill value minus the nugget value.

2.1 .1.4 Modified Bayesian Kriging

As already mentioned, we use a non-standard version of kriging when performing
DI? Our method is a modified version of SimpZe Kriging (i.e. kriging with known
mean, Wackernagel, 1995) which we call Modified Bayesian Kriging (Schultz et al.,
1998, see also Appendix A). MBK follows the Bayesian Kriging methodology devel-
oped by Omre (1987). MBK is based on Simple Kriging rather than the more typical
Ordinary Kriging, because we assume that our data has been demeaned and hence
that we know the mean of the underlying process (i.e. it is zero). By using Simple
Kriging, we control the extrapolation behavior of the kriging, guaranteeing a return
to zero values away from data points. The assumption of zero mean also implies that
before the data can be kriged the underlying model must be removed to detrend the
data. For example, for regional travel time data, the data to be kriged would be the
observed residuals for ground truth events relative to a regional travel time model. If
the mean were not known, Ordinary Kriging could be used but this would increase
the error estimates for interpolation points due to the uncertainty inherent in deter-
mining the mean (Wackernagel, 1995). For MBK it is always assumed that the mean
is known and equal to zero. This constraint of zero mean allows us to derive the krig-
ing equations without imposing a bias constraint, so MBK is not truly a BLUE pro-
cess (rather it is a BLE process). This is not without precedent in the kriging
literature, however, and others have noted that in some cases removing this con-
straint can improve results (Cressie, 1993).

18

The MBK modifications to Simple Kriging address two shortcomings of the basic
kriging technique which were problematic for our purposes: the assumption of con-
stant measurement error for all data points, and the lack of a means to include apri-
ori constraints on the range of influence for each point. We discuss the MBK
approach to each of these below.

2.1 .1.4.1 Data Point Dependent Measurement Error

MBK allows data point-dependent measurement error (i.e. uncorrelated error>.
Measurement error is often incorporated in kriging (this is the nugget, as we dis-
cussed above), but it is generally assumed to be the same for all data points. We
know that for many of the typical KBase data sets the error associated with each
data point can vary considerably (e.g. earthquakes vs. nuclear explosions), so this is
a poor assumption for us. In order to allow the specification of point dependent mea-
surement error, we work with covariances, variances, and correlation coefficients,
rather than the traditional variogram function. Using Equation 3, we can derive
these quantities from the variogram, as shown in Figure 4. For example, for P travel
time corrections for station ABC, we first make a variogram of all the P residuals rel-
ative to the base model. If we have separate estimates for the measurement error
associated with each point, these are used for kriging. Otherwise, the measurement
error (i.e. square root of variance) for all points is taken as the square root of the
nugget. The theoretical covariance value at the first finite distance beyond zero is
equal to the variogram sill value minus the nugget value. In the terminology of
MBK, this is the background variance. It is the assumed zero distance covariance for
any theoretical point which we krig for (these points do not have measurement
error). The correlation coefficient function is obtained by normalizing the covariance
function, with the nugget removed

There may be some confusion regarding the covariance function as explained.
here. Notice that it is a function of interpoint distance only. Thus the meaning of the
value of the covariance at a given distance is that it should reflect the correlated
variance of all possible point combinations with that distance, i.e. it does not refer to
correlations of the variance due to multiple realizations of the value at two distinct
points as might be expected from the traditional statistical definition of covariance.
Such a derivation is impossible in this case because we have only one sample (i.e.
data point) at each location; additional realizations are not available. This is an
important distinction to make and if understood should prevent confusion regarding
the use of the covariance information in kriging. Essentially, the total variance real-
izable at any theoretical point is the same, and is equal to the covariance at zero dis-
tance (i.e. variance) less the nugget value. How this total variance correlates with
that at another point determines the covariance between the points. To get the cova-
riance function, we multiply the total variance by the cross correlation function.
Thus, the value of the covariance function at any distance reflects two factors: the
total realizable variance at the two given points separated by that distance, and the
correlation of the two points. Perfect correlation with no variance at each point (i.e. a
flat surface) will lead to zero covariance as will zero correlation with large variance

19

at each point (a high-amplitude white noise surface). Note, however, that the last
example will have a large covariance at zero distance (i.e. variance) -- this is the nug-
get.

2.1 .1.4.2 Apriori Range of Influence

The second MBK modification allows the use of apriori range of influence infor-
mation for each point. For data sets with good spatial sampling, this is not necessary
because any underlying processes should be defined by the data itself. For many typ-
ical KBase data sets, however, the spatial sampling is poor and the analyst may have
additional information that cannot be derived from the data due to the limited sam-
pling (e.g. the scale length of a tectonic province). Our modification allows the incor-
poration of some apriori information by associating a radial blending function (1 to 0)
with each data point Xi, i.e.

Z(XJ ‘4 B@Z(X,) tEQ 4)

where Bip is a function of the distance between point Xi and the kriged point XP
Basically, what this does is limit the influence of data points in the interpolation as
they move further away. It can be thought of as a smoothed version of Neighborhood
Kriging. However, it has the advantage of avoiding the discontinuities associated
with Neighborhood Kriging, because the weights associated with points that move
into or out of the kriging neighborhood fade in and out smoothly rather than chang-
ing discontinuously as a point leaves the neighborhood.

In the MBK equations, this blending function multiplies the correlation function
and thus can only act to decrease the range of correlation (see Schultz et al., 1998
and Appendix A, EQ. A-22). This behavior makes MBK behave much better as an
extrapolator when interpolating in regions away from data point sampling, as
intended, but it can prevent proper interpolation in regions with good data point
sampling. For this reason, MBK is implemented with options to control the use of
blending in areas with good sampling. At present, we provide two options which
inhibit blending dependent on either the density of surrounding points or the azi-
muthal coverage of surrounding points. In either case, the blending is only used
when the point in question is deemed to be isolated from surrounding points. When
the point is in a region of good data sampling there is no blending and the equations
essentially reduce to Simple Kriging with zero mean. Further, the transition
between the two cases is implemented in a smooth fashion such that no discontinui-
ties are created.

In the paragraphs above we have defined the MBK process including how to pre-
pare the data by removing trends and assigning measurement errors and blending
functions for each point, and how to perform a correlation assessment using vario-
gram analysis. The functionality to perform the variogram analysis and subsequent
MBK calculations are implemented as Matlab m-files and are available from Sandia

20

Labs upon request. Details of the variogram analysis and kriging functions are given
in Appendices E-l and E-2, respectively.

Now that we have examined how a parametric grid surface is generated, we are
ready to consider the second part of the DP task, mesh generation or tessellation.
Recall that mesh generation is used as a framework for representing the global
kriged surface as a discrete high performance and locally generated interpolated sur-
face. The necessary tessellation framework is the subject of the next section.

2.1.2 Tessellation
With kriging, we can calculate values with error estimates at any set of points in

space. The set of points that we choose to represent the kriged surface by, and how
those points are connected, is commonly referred to as the tessellation. The KBase
calculates and saves Delaunay tessellations, a well characterized and intensely stud-
ied tessellation whose connectivity is specified by triangles. The tessellation is then
used by the KBase to rapidly find the nearest node neighbors of any arbitrary loca-
tion, which are needed for NNI. Given those neighbors, the tessellation is used to cal-
culate the weights necessary to perform the NNI. The process of evaluating the
proper tessellation, however, is actually done in parallel with the kriging process in
such a way that a minimal number of nodes is used to represent the kriged surface
as an NNI surface to within an arbitrary pre-defined level of accuracy. This process
is referred to as mesh refinement and will be discussed later in section 2.1.3 and in
much greater detail in Appendix B.

Proper implementation of a Natural-Neighbor Interpolator requires that a
Delaunay tessellation be used to form the node-to-node connectivity information
(Delaunay, 1934). Delaunay tessellations, which for our purposes are triangles on 2-
D or 3-D surfaces, are of particular interest because they minimize the maximum
angles (or inversely maximize the minimum angles) of the triangles created in the
tessellation. Fortune (1992) refers to this property as the maximum-minimum angle
property. This property tends to form equilateral triangles and leads to configura-
tions where the average node valence (the number of edges connected to a node) is
approximately six. Generally speaking, well proportioned triangles fair better with
regard to minimizing local data variability and numerical errors accumulated during
the interpolation calculation.

In addition to forming well-shaped triangles, Delaunay triangle sizes are largely
determined by the density of the nodal distribution from which they are created.
This makes the Delaunay tessellation an ideal selection for tessellating sparse and
scattered data where nodal density is proportional to the surface curvature of the
data set. This is precisely what is obtained with the mesh refinement technique to be
described later.

Many algorithms exist that perform Delaunay tessellations. Some of the more
popular algorithms include “edge-flipping” (Fortune, 1992), “incremental insertion”
(O’Rourke, 1994), and the convex hull algorithms such as the Barber, Dobkin, and

21

Huhdanpaa (1993) “quickhull”, to name a few. For purposes of constructing the
KBase parametric grids we have implemented an incremental insertion algorithm.
We chose this algorithm for several reasons. First, it is easily modified to use the cur-
rent connectivity of the mesh, prior to the next node insertion step, to find the trian-
gle that contains the node to be inserted. Using spatial locality this way, to find the
insertion point of the next node, removes much of the performance degradation seen
by most incremental methods that don’t implement a built in searcher. Second, the
NNI weight calculation assumes that the point to be interpolated is a new data point
to be added to the tessellation which is functionally equivalent to the incremental
insertion algorithm. This permits a large subset of code used to perform tessellation
construction to be reused during the interpolation calculation. Third, incremental
methods allow for easy insertion (and removal) of nodes, locally, into existing tessel-
lations which means that mesh modification is greatly simplified. Modifying an
existing mesh simply means the nodes are incrementally inserted (or removed) into
(or from) the existing mesh within a small local connectivity region. The method does
not require that the entire tessellation be rebuilt from scratch. Finally, an incremen-
tal approach can easily be modified to tessellate a spherical surface, which is the sur-
face (the Earth) that the data is ultimately represented upon.

The incremental Delaunay tessellation algorithm at any point in the mesh con-
struction is as follows:

For each new node to be inserted

1. Find all triangles whose circum-circle contains the new node (a circum-circle is a unique
circle that passes through the three nodes of its triangle).

? . Remove each triangle whose circum-circle contains the new node to form an enclosing
polygon that contains the new node.

3 . Connect each node of the enclosing, or “insertion” polygon to the new node to form new
triangles that all share the new node.

This process is illustrated in Figure 5. Figure 5a shows the original tessellation
and the new node to be inserted. Figure 5b highlights the triangles whose curcum-
circles contain the new node. Figure 5c depicts the “insertion” polygon after the con-
taining triangles are removed. Finally, Figure 5d illustrates the new tessellation
after the new node is connected to each’ node of the insertion polygon.

Using this process, an entire tessellation can be built from an arbitrary collection
of nodes. The next question is what is the collection of nodes from which the tessella-
tion should be assembled? More specifically, how are the nodes defined to utilize the
initial raw data, represent a kriged surface to a prescribed level of accuracy, and
simultaneously minimize the number of nodes required to form the tessellation?
This process, known as mesh refinement, is the subject of the next section.

22

2.1.3 Mesh Refinement
The goal of mesh refinement is to produce a minimal or “sufficient” basis for per-

forming fast NNI that produces values within a prescribed error bound of the kriged
dataset surface. But what points should comprise the tessellation to ensure that the
accuracy requirements are fulfilled? An obvious choice is a regular grid over latitude
and longitude with the spacing small enough to capture the smallest scale variations
that have been sampled in the underlying data process. Such a grid would certainly
provide a sufficient basis to insure high-quality results from the NNI, but it would
also include many superfluous points in areas where the kriged surface varys little
over a large range of grid points. These extra points will lead to degradations in per-
formance when the node and associated data are accessed from the KBase and when
the natural neighbors are found before performing the interpolation. A much better
solution is an irregular grid with grid spacing proportional to the surface curvature
of the sampled underlying process. The irregular grid need have no more points than
are required to insure a specified level of accuracy in the NNI.

We use an iterative method to find the optimaZ irregular grid for each data set.
Initially the raw data points are inserted into a coarse background grid and the grid
is checked for accuracy and roughness to see if it is a sufficient basis for NNI. If it is
not, new intermediate points are added and the process is repeated until a sufficient
basis is found. The iterative process following mesh initialization can be defined by
five distinct steps:

1.

2.

3.

4.

Tessellating

Any new refinement nodes found in the previous iteration are added to the
existing tessellation using an incremental method (The first pass creates the
initial tessellation from the raw data and a pre-defined coarse background
mesh).

Smoothing

Each of the new data points, excluding the original data and boundary nodes,
are smoothed using a length-weighted Laplacian smoother to remove poorly
formed triangles;

Kriging

Every new data point is assigned a correction by performing an MBK calcula-
tion for each new triangle node;

Curvature Refinement

All nodes that exceed surface roughness/curvature requirements are split by
creating new nodes to be inserted at the mid-points of the edges that share the
rough node;

-
1 23

5. Accuracy Refinement

Lastly, all remaining triangle edge midpoints and centers are interpolated
using a gradient-modified version of NNI and kriged using MBK and differ-
ences are formed. New nodes are created for insertion into the tessellation at
all edge and triangle mid-points for which the differences exceed a user-speci-
fied relative error tolerance between the interpolated and kriged values (A tri-
ansition to absolute error is made for data values that approach zero).

Steps 1 through 5 are repeated until all relative error and surface smoothness
requirements are satisfied. The mesh refinement process and data flow is illustrated
in Figure 6. A detailed discussion of the mesh refinement process is given in Appen-
dix B. The gradient-modified NNI method is discussed later in the DA section (sec-
tion 2.3) and is described in detail in Appendix D. The necessary mesh refinement
implementation functionality is coded in Matlab m-files and C++ source, available
upon request, and is described in Appendix E-3.

Note that the kriging, tessellating, and interpolating processes are fundamen-
tally inter-twined during mesh refinement: new nodes are inserted into the tessella-
tion at points where the relative difference between the kriged and NNI results
differ by more than a prescribed amount. Thus, the existing tessellation is continu-
ally updated as new points are added near spatial locations that did not meet the rel-
ative error requirements.

Once the optimal NNI grid has been determined, the information must be stored
in the DS step. This is the subject of the next section.

2.2 Database Storage (DS)

2.2.1 Merging with Existing Global Data
When a researcher chooses to contribute parametric grid data to the KBase, that

information must be merged with any existing information of the same type. For
example, a KBase contributor might deliver a grid of P travel time corrections for a
given station for a given region that overlaps with existing KBase corrections for the
same station/phase pair for another region. In fact, such an overlap is guaranteed for
all but the first contributor of a given data type because all the parametric grids
stored in the KBase are global. Rather than attempting to merge the contributed
grid with the existing global grid -- a difficult process which can lead to many prob-
lems (e.g. discontinuities at edges) -- we instead add the ground truth data points
from the new grid to those for the existing global grid and regenerate the global grid
through mesh refinement. The resulting mesh should be a cohesive, continuous rep-
resentation of the interpolation of the combined ground truth data points. Thus,
smooth transitions between study regions are assured. Also, the global grid can be
readily re-generated at any time so editing of any of the data points by the contribu-
tors or the addition of new data points is easily handled.

24

2.2.2 Data Storage
Once the data have been reconciled with the global set and a global parametric

grid has been determined that accurately represents the kriged value and modeling
error surfaces, the information (tessellation and associated value surfaces) can be
entered into the KBase. Currently, the storage mechanism is a simple binary flatfile,
but the actual storage mechanism for operational use is still undecided. In this docu-
ment we shall not discuss the details of the storage mechanism and concentrate,
instead, on the type of data that is stored in the database.

The primary types of parametric grid data that must be stored in a database
regardless of format include:

1.

2.

3.

4.

5.

6.

7.

8.

Generic header information including the date of creation, the version numbers of the
kriging and mesh refinement software used to generate the data, and the maximum tessel-
lation, basemodel, station and phase ID’s used to construct the surface identifier hashing
function;

Basemodel, Station;and Phase names and associated ID’s used to construct surface identi-
fiers (see paragraph below for a definition of a ‘surface’);

Surface accounting information including the number of surfaces, and for each surface,
the surface id, the basemodel, station, and phase names from which the surface was
formed, the back-ground modeling error used by the surface, and the tessellation id of the
tessellation upon which the surface is represented;

Tessellation accounting information including the number of tessellations, and for each
tessellation, the tessellation id, the number of nodes, triangles, and represented surfaces,
and the tessellation’s modified-gradient parameter flag;

Mesh data for each tessellation including a description of all nodes that comprise the tes-
sellation and the connectivity of the tessellation in the form of triangle information. Each
node is defined by an ID, a location that includes the longitude, latitude, and depth of the
node, and a type flag that indicates specific node type information. Each triangle is defined
by an ID, a set of three node ID’s that are the triangle’s vertices, and a type flag that gives
additional triangle specific information;

Correction data defined for each surface at each node of the surface’s owning tessellation.
This data includes a correction value, a longitudinal and latitudinal derivative, and a mod-
eling error value (this is travel-time specific... other data types, such as hydro-acoustic or
infrasound, may have different data storage requirements).

Mesh refinement calculation setup and flag information which is necessary to reliably
regenerate the mesh data that is contained within the database; and

Kriging calculation setup and flag information which is necessary to completely regener-
ate the kriged surfaces from which the refined mesh was evaluated.

In the list above the concept of a surface is introduced which refers to the actual
stored data defined at all nodes of a specific tessellation for a unique identifying

25

basemodel, station, and phase set. Each surface is owned by a single tessellation.
That is, each surface only uses one tessellation’s node-set to tie its values to. Sur-
faces are not multiply defined across many tessellations. However, it is possible to
include more than one tessellation in the data storage. Each tessellation has its own
node and connectivity (triangles) definition and owns some subset of the surfaces
defined in the database.

In the next section we shall discuss how the libKB1 interface software uses stored
data to provide requesting client applications with interpolated results.

2.3 Data Access (DA)

Once data have been processed and stored, they are ready to be accessed and
used by client applications. The access and use of the data consists of three primary
steps: data retrieval from the KBase, containing triangle search via the walking tri-
angle method, and the NNI calculation to return results. Each of these functional
steps are executed by the ZibKBI software which serves as the implementor of the
Data Access process.

This section will begin by discussing briefly the fnnctional interface of IibKBI.
Subsequent sections will describe each of the three data access steps including data
retrieval, which defines the methodology and format for extracting data from the
KBase; the containing triangle search which refers to the searching method used by
libKB1 to hnd the client requested interpolation point within the tessellation(s) con-
nectivity structure; and, the NNI including the gradient-modification used to ensure
that the NNI is differentiable at all node points.

2.3.1 IibKBl Functionality
Parametric grid data retrieval and subsequent processing is handled by a library

of C++ KBase interface routines known as libKB1 (library Knowledge Base Inter-
face). Specific function calls can be inserted into client source code to make requests
from the libKB1 API during execution. The libKB1 functionality can be divided into
six specific tasks including:

1. database connection,

2. surface fetch initialization (SFI),

3 . data cluster fetch size initialization,

4 . surface association,

5. location initialization, and

6. surface interpolation

The first task, database connection, is simply a call to establish a connection to
the KBase through a database manager such as Oracle, SDE, or even a flat-file rep-

26

resentation. This call is a standard request providing the names of the server, data-
base, password, and other pertinent information required to make a proper
connection.

The second task, surface fetch initiahation (SFI), refers to the manner in which
DA is restricted, or enveloped, to include only a subset of the data available in the
KBase. DA is restricted to optimize data retrieval performance by minimizing the
amount of data that must be retrieved from the KBase and stored in-core. This is
generally accomplished by eliminating data (surfaces) from retrieval consideration if
they are not necessary for the current problem defined by the client application
accessing libKB1. As discussed above, the concept of a surface, used here and
throughout the remainder of section 2.3, refers to the data that comprise travel-
times, magnitudes, amplitudes, etc., and their derivative and modeling error values
for a specific basemodel, station and phase assignment. The concept of a surface, as
well as the methodologies and software abstractions used to enable the data access
restrictions are discussed in the next section on data retrieval.

The third task, data cluster fetch size initialization, defines another restriction on
the amount of data from particular surfaces that can be loaded at one time. The data
cluster is best viewed as a spatial cookie-cutter that only retrieves data from
requested surfaces whose nodes lie within the boundaries of a pre-defined polygon
(the cookie-cutter). This concept is also described in detail in the next section.

The fourth task, surface association, allows restriction of which surfaces are actu-
ally interpolated to a subset of those that were loaded based on the SF1 prescription.
Like the previous two tasks, this one is also described in more detail in the next sec-
tion.

The fifth task, Location initialization, simply sets the longitude and latitude of an
interpolation request from the client application. Once libKB1 receives this informa-
tion it is able to perform a containing triangle search which is prerequisite to calcu-
lating the interpolated values at the provided location. The containing triangle
search is discussed briefly in section 2.3.3 and in greater detail in Appendix C.

Finally, the sixth task, surface interpolation, refers to the actual NNI calculation
at the current location specified by the client. The NNI calculation is described below
in section 2.3.4 and in much greater detail in Appendix D.

2.3.2 Data Retrieval
We have just seen that libKB1 handles all issues associated with retrieving data

from the KBase. Specifically, it accomplishes the data retrieval by restricting the
amount of information that is loaded in-core and by further restricting interpolation
calculations on a surface-specific basis. The amount of data retrieved is restricted in
two different ways. First, the available surfaces in the KBase are culled to a pre-
defined subset as defined by the client application. Second, a spatial data cluster
(cookie cutter) is used to further restrict the amount of data loaded to that which lies

21

within the boundary of the data cluster. We shall describe each of these methods of
restricting the accessed and processed data in the paragraphs below. But first we
need to define the abstract representation of a tessellation object to fully understand
how libKB1 accesses the data and makes it available for use by a client application.

2.3.2.1 Tessellation And Surface Object Abstraction

In section 2.2.2 we discovered that the KBase, regardless of implementation,
must store surface, node, and triangle information within the database. We also saw
that the KBase was capable of storing many tessellations and that each tessellation,
in turn, could have many surfaces assigned to it. Figure 7 illustrates this concept
abstractly with an imaginary KBase that includes 4 tessellations. Each tessellation
contains the nodes and triangles that define spatial location and connectivity infor-
mation for that tessellation. In addition, each tessellation contains one or more sur-
faces that utilize the spatial information of the tessellation (the nodes) as locations
to define its values‘ on. For example, assume that “surface 1” is travel-time informa-
tion which consists of a single travel-time value for each and every node defined
within the tessellation. The assembly of all such values over their respective nodes
forms a discrete surface. Using an interpolation function one can define a continuous
interpolated surface over the entire range of the tessellation.

In our imaginary KBase of Figure 7 we see that “tessellation 1” has 4 surfaces,
“tessellation 2” has 5 surfaces, “tessellation 3” has 2 surfaces, and “tessellation 4”
has 3 surfaces. Notice that the index number of each surface is unique regardless of
which tessellation owns the surface. This is an intended data requirement of the
KBase. The KBase does not allow a surface to be represented by more than one tes-
sellation. One can imagine the trouble that would undoubtedly occur if IibKBI tried
to access the surface assigned to say basemodel ‘AK135’, station ‘CMAR’, and phase
‘P’ only to find that the surface index existed in two different tessellations. Which
one would be used?

The relationship between a tessellation and the surfaces that it owns can be
made clearer by examining Figure 8. Figure 8 shows constituent parts of “tessella-
tion 4” of the imaginary KBase. The parts of a tessellation consist of geometry infor-
mation (nodes and triangles) and value information (surfaces). Notice that all
geometric spatial location information is provided by the nodes of the tessellation. A
node is, quite simply, the latitude, longitude, and depth of some point on the earth. In
and of itself it has no other attributes assigned to it. The triangles, on the other
hand, are a means of tracking the mesh connectivity of a tessellation. A triangle is
simply the indices of each of the three nodes that comprise the triangle. The node
indices are always ordered in a counter-clockwise fashion relative to an outward
pointing normal on the surface of the Earth. Triangle connectivity provides a means
for determining node neighbors and is vital for performing the containing triangle
search and the node neighbor calculation both of which are required to perform NNI.

28

The actual data values that are to be interpolated are contained within the sur-
face object representations. In Figure 8 three surfaces are shown; 12,13, and 14.
Notice that all three use the tessellations’ nodes as the spatial location upon which
their values are defined. The only difference between one surface and the next is the
magnitude of the value at each of the tessellation’s fixed nodes and not its location.

2.3.2.2 Surface Fetch Initialization (SFI)

Now that we have examined the abstract nature of the tessellation object relative
to how it is represented in IibKBI we are ready to investigate the three primary data
retrieval tasks of libKB1. Recall that the first data retrieval task (task 2 in section
2.3.1 above) was surface fetch initialization (SFI). The purpose of SF1 is to define a
specific set of surfaces that are defined as necessary and required by the calling client
application to properly perform its intended function. By restricting the number of
surfaces accessed by libKB1 to a subset of those available in the KBase a substantial
performance gain may be noticed. Also, computer resources (memory) may be in
short supply and minimizing the amount of in-core data can help to alleviate this
problem.

Figure 9 depicts a surface fetch subset from the imaginary KBase. In the example
presented in Figure 9 surfaces 1,2, and 3 of “tessellation l”, surfaces 5,7, and 9 of
“tessellation 2”, surface 10 of “tessellation 3”, and surface 14 of “tessellation 4” are

%
designated for accesswhile surfaces 4,6,8,11,12, and 13 of their respective tessella-
tions are restricted from access. In this example we have reduced the number of sur-
faces required for access by almost 50%. In reality the number of surfaces may be in

1’
the thousands while the fetch subset is generally in the single or double digits. ReaZ
probZems can see savings of a factor of 10 to 100 in access performance.

%

As an example of the use of SFI, consider the location of a seismic event with a
small subset of the station/phase combinations available in the KBase, e.g. only P
phases for the stations at regional distances. Once the event is ready to be located,
the relevant station/phase combinations are known, so SF1 can be used to limit the
scope of the queries to the KBase in the data access step and thereby improve the

Q

speed of the KBase access..

2.3.2.3 Data Cluster Access

The next data retrieval task performed by the libKB1 API is data cluster fetch size
initialization (task 3 in section 2.3.1). Defining a data cluster fetch size is also a
method of minimizing the amount of data that must be acquired and stored in-core.
Recall that the data cluster was best viewed as a spatial cookie-cutter that only
retrieves the requested surface data from nodes that lie within the confines of a pre-
defined polygon (the cookie-cutter). The need for this type of functionality may pro-
vide the best reason to use a sophisticated commercial product for DS rather than a

29

gle on the list would be accessed and subsequently checked to see if it were the
containing triangle. This process would continue until, ultimately, the containing tri-
angle of the current interpolation location was found. Unfortunately, although easy
to implement, brute force methods such as this are computationally expensive if the
number of triangles is large. In fact, these methods on average have search times
that are proportional to l/2 the number of triangles loaded from a tessellation.

Other grid and tree based techniques can be used that tend toward search times
that are proportional to the square root of the number of triangles but they require
additional storage structures beyond that already required to represent the tessella-
tions connectivity. Instead, we chose the Walking Triangle Algorithm (see Sam-
bridge, 1995 or Lawson, 1997) as it also achieves square root performance but
doesn’t require additional storage structures to implement.

In this technique, an initial triangle is selected and tests are made to find
whether the current client supplied location of interest lies to the left or right of each
edge of the triangle. Each edge of the triangle is treated in succession. If the point
falls to the left of an edge, the next edge of the triangle is subjected to the same test.
If the point falls to the right, however, the search shifts to the triangle to the right
and the process is repeated. When finally a triangle is found for which the point lies
to the left of all three edges, the containing triangle has been found, and the process
can continue on toward determining the interpolated value at the requested location.
The result of a typical triangle walk process is illustrated in Figure 13.

Generally, the first time a triangle walk occurs for a specific event location, the
first triangle in the currently loaded list of triangles for a specific tessellation is used
as the initial guess. On subsequent requests, however, the previously determined
containing triangle is used as the initial guess for the next iteration. This has a
decided advantage from the point of view of typical event location clients in that they
tend to issue interpolation requests that progressively “home-in” on the correct event
location. By choosing the previous containing triangle for the initial guess of suc-
ceeding searches the total number of triangles that must be traversed to the new
location is always minimal.

The Walking Triangle AIgorithm works equally well in a flat plane or on the sur-
face of a sphere as implemented in libKB1. The only modification is minor and con-
cerns the determination of the “leftness” or “rightness” of the edge tests when
processing the search. The details of the algorithm for both flat plane and spherical
surfaces are provided in Appendix C.

With the containing triangle determined for a client-requested event location we
are ready to proceed with the NNI. This is the subject of the next section.

2.3.4 Natural-Neighbor Interpolation (NNI)
At this point we are ready to consider the methodology behind NNI. However,

some background may be informative on why NNI was chosen from an exhaustive

32

d

a
.,

ml

al
.’

P

a.
a

d.‘
d.
fa
1
d ..
I
1

list of potential interpolators. Many interpolation methods are available for general
use and all vary with how well they fit arbitrary data representations. Generally
speaking they can be organized into the two distinct classes of fitted functions and
weighted average methods. Fitted function methods generally require that a set of
coefficients to some polynomial be determined by solving a related set of linear equa-
tions involving the data and constraints or criteria that control the fit of the function.
The fitted function approach summarizes data behavior in a global manner. With few
exceptions, fitted function methods are typically poor models for sparse data distri-
butions in that the resulting surface can behave unexpectedly; over- and under-shoot
between data points being a typical problem.

Weighted average techniques, on the other hand, sum the data influences at an
interpolation point from all neighbor points that lie within the interpolation points
influence region. Weighted average techniques are typically local in nature and allow
local surface trends to be captured which, generally speaking, is not always possible
with the fitted function approach. We were forced early on to consider essentially
local methods since they only required a small neighborhood of associated data to
accurately perform the interpolation calculation. The reason for this concerns the
shear volume of data contained by the KBase which was seen to be much larger than
might possibly be loaded into core memory at any one time. If global data were
required to perform a surface interpolation it could become prohibitively slow as the
quantity of surface data for individual surfaces grew larger. In fact, the kriging inter-
polation method uses this global calculation methodology which eliminated it from
further consideration for our fast interpolator (even though it would have been sim-
pler to implement a single interpolation scheme for the entire DP through DA pro-
cess). -.

Of the many available weighted average interpolation techniques, NNI appears
to best fit all of our requirements. These requirements include:

1. The ability to model an existing surface accurately,

2 . Possession of first and second order continuity and differentiability,

3 . Dependence on local neighborhood data only, and

4 . Properties exhibiting strong surface stability regardless of data density and anisotropy
(scattered and irregular).

For our purposes, NNI can always accurately model a surface by simply densify-
ing the tessellation using mesh refinement as discussed in section 2.1.3. It also is
continuous and differentiable everywhere except at the actual tessellation node
points where the differentiability criteria fails. However, a small modification (gradi-
ent-modification), which is described below, remedies this inadequacy quite simply
and easily. As we shall soon see, NNI depends on the smallest neighborhood of local
data and thereby satisfies the third requirement. Lastly, NNI always exhibits stabil-
ity and furthermore never propagates erroneous data values beyond its small influ-
ence neighborhood. This can’t be said of many weighted average schemes or any

33

fitted function schemes. Watson (1992) gives an excellent survey of the major types of
computational interpolation methods employed today, including NNI, and highly rec-
ommends NNI as a sparse-local data interpolator.

Natural-neighbor interpolation, as discussed above, is a local weighted average
interpolation method. These methods (in two dimensions) have an interpolation
function of the form

n

.ftxY Y) = C wi(x9 Y>.fi (EQ 5)
i= 1

where i is summed over all node neighbors that surround the interpolation point (x,
y), 4 is the function value at the nodes, and wi(x,y) are the normalized influence
weights attached to neighbors (each i) that influences the interpolation result at (x,
y). In NNI these weights are referred to as the natural-neighbor coordinates of point
(x,y> (Watson, 1992). Our treatment simply refers to them as weights. A brief, quali-
tative synopsis of the method by which the natural-neighbor weights are calculated
will be given here. Appendix D covers the method in more detail, including the gradi-
ent-modification necessary to ensure first and second order differentiability at the
node points. Refer to Watson (1992) and Sambridge (1995) for excellent treatments of
the full procedure.

The natural-neighbor weights are best described using a geometric definition.
Examine the five nodes in Figure 14. The dashed lines connecting the nodes repre-
sent the Delaunay triangles whose circum-circles include the interpolation point (see
section 2.1.2 for a description of Delaunay triangles and circum-circle containment).
The solid lines are the voronoi edges of the nodes, the complete set of which is
referred to as a voronoi polygon (Preparata, 1985). Each node in a Delaunay tessella-
tion has exactly one convex voronoi polygon that completely surrounds it. The
voronoi polygon can be constructed by passing a perpendicular line through the mid-
points of each edge of the Delaunay tessellation. The intersection of those lines form
the vertices of the voronoi polygon. In Figure 14, we have removed outlying edges for
clarity.

Figure 14 depicts the result of adding the interpolation point to the tessellation.
The shaded portion of Figure 14 represents the new voronoi polygon for the interpo-
lation point. The new voronoi cell about the interpolation point overlaps all of the
original cells of its natural-neighbors. The natural-neighbor weight for a neighbor
node acting on the interpolation point is defined as the ratio of the area of overlap
with the neighbor nodes original voronoi cell and the new voronoi cell to the total
area of the new voronoi cell. Since the nearest-neighbor weights are normalized they
always lie between 0 and 1. .This results in the property that if an interpolation falls
exactly on top of a node the function value of the node is returned. The other impor-
tant property to note is that the interpolation is entirely local and only depends on
the nearest-neighbor set of the interpolation point.

34

This type of interpolation is linear and results in a surface that has continuous
first order derivatives throughout the tessellation except at the data points them-
selves. A completely first and second order continuous interpolation can be evaluated
by blending the linear form with the natural-neighbor gradient evaluated at the
interpolation point. Watson (1992) describes some simple parametric blending func-
tions that account for the linear interpolant, gradient, and the variability in the data
to control the surface tautness. Accounting for the neighbor gradient at the interpo-
lation point is termed the gradient-modified (GM) NNI. The method is described in
detail in Appendix D.

Recall that the natural-neighbor weights must be calculated for each unique
tessellation as determined by the surface association task of 1ibKB.I (section 2.3.2.4
above). Once the weights are known they are multiplied by the surface values (the 6
in equation 24 above) and summed to obtain the interpolated value at the requested
client location. The appropriate weights of each tessellation multiply all “event
associated surfaces” within their domain. Examining Figure 12, once more, will help
to clarify this statement. Given the weights for “tessellation l”, they will multiply
the values in surface 3 to obtain the interpolation value at the client location for
surface 3. Similarly, the weights from “tessellation 2” will multiply values from
surfaces 7 and 9, and weights from “tessellation 4” will multiply values from surface
14. The interpolation process proceeds this way each time the client requests an
interpolated value for a specific event associated surface.

2.4 Summary

This completes the discussion of data preparation (DP), data storage (DS), and
data access (DA) of parametric grids within the KBase. To review, DP begins by
examining the relevant raw data for each surface to be stored in the KBase using
uariogram analysis to determine the spatial correlation behavior of the data, from
which kriging parameters can be derived. With this information, a tessellation will
be created that minimizes the number of nodes needed while maintaining a pre-
defined level of accuracy between the kriged surface and the NNI surface which will
be used to represent it in the KBase . This occurs in the mesh refinement step of DP.
Next, in DS, the NNI surfaces are merged (actually re-kriged) with any existing data
already present in the KBase and are stored. Finally, in DA, when requested by a
client through ZibKBI, data from the KBase is extracted using a surface fetch
initialization (SFI) prescription to restrict the number of accessible surfaces and a
representative data cluster size to restrict the amount of data accessed per SF1
surface. This set of data is further restricted from interpolation processing on a per
event basis by the client through a surface association prescription. The remaining
surfaces are processed to find the containing triangles of all locations as prescribed
by the client applications. Then an NNI calculation is performed and all interpolated
values are returned to the client for each of the final surfaces defined in the event’s
surface association set.

35

To help clarifjr these concepts, in the next section we provide an example using
seismic travel time correction data.

3 Example: Seismic Travel Time Correction Data
Historically, the organizations producing global earthquake bulletins have used

1D radial Earth models to locate events (e.g. the ISC uses or did use JB -- Adams et
al., 1982). Improved accuracy is obtained by applying a series of corrections to
account for non-radial effects: the elliptical shape of the Earth, the non-standard ele-
vation of individual seismic stations, near-receiver velocity structure, and event-
dependent path velocity variations (Figure 15). Note that the order of the corrections
is important because each assumes that the others have been applied before it, i.e.
the corrections are relative to other corrections. The ellipticity and elevation correc-
tions are easily calculated and nearly always applied. The near-receiver term
(known as the ‘bulk t t’ s a ic correction”) is less common, but simple to calculate once a
large number of residuals (after ellipticity and elevation have been corrected for) are
available. Path corrections are the least often applied, but have long been recognized
as essential when particularly accurate locations are needed.

Calculating path corrections for repeated events from the same site is simple
enough -- the correction per station/phase pair is calculated from historic events and
applied to any future events from the same site -- however, interpolation of the cor-
rections for new locations is less straight-forward. Past approaches have generally
involved fitting a smoothed surface to the observed residual data: e.g. a second order
polynomial surface (an “SRST”) or a bicubic spline surface (an “SSSC”). While these
surface fitting approaches are simple and easy to understand, they suffer from two
significant problems. First, the surfaces are smoothed fits (see the discussion of fit-
ted-functions in section 2.3.4), which means they fit only the average trend of the
data, regardless of the accuracy of the data. Thus, in the case where some of the
residual points have greater accuracy than others (e.g. well-recorded nuclear tests
vs. earthquakes) there is no way to make the fitted surface follow those points more
closely. Second, the smoothed surfaces have no error associated with them. Essen-
tially, once a surface has been fitted, the connection to the data is lost; every point on
the surface has equal confidence. This second problem is of critical importance for
CTBT monitoring because verifying a possible violation will require not only the best
possible location but also an accurate estimate of the location error.

For large, well-recorded events, path residuals tend to average out so path correc-
tions are generally unnecessary and the error associated with them is irrelevant. To
successfully monitor a CTBT, however, requires detecting and locating small events
which are generally recorded by much fewer stations (a 1 kt well-coupled event is
equivalent to mb 3.8 - 4.5; Lay, 1997). Further, these stations tend to be at regional
distances where global (or even regional) one-dimensional models typically do not fit
the data as well. For such events, if the error associated with the model is not prop-
erly accounted for in the location algorithm, then more than (100 - X)% of the time
the X% confidence ellipses calculated for many smaller events may not contain the
true locations, as was noted for regional PIDC events detected and located in the
first few years of operation. The situation at the PIDC has been improved by updat-
ing the global one-dimensional models to include estimates of “modeling error”

37

(though in fact this is actually bias). In a statistical sense this has “fixed” the prob-
lem because the error ellipses are now larger so that they generally contain the true
event locations, but in fact the actual amount of mislocation has not decreased.

The preferred solution, of course, is to reduce mislocation and the size of the error
ellipse where possible based on the available data. As we shall see, we can accom-
plish this using the parametric grid capability described in Section 2 to store and
apply path correction information. In this case, the raw data points are the locations
of historic seismic events and the values to be interpolated are the residuals relative
to a travel time base model (which may include corrections for ellipticity, elevation,
and near-receiver structure). The correction surface will fit each point as tightly as is
warranted by the measurement error specified for that point, and each interpolated
value will include an error estimate based on the statistics derived from the ground
truth points themselves. Using a synthetic data set, we demonstrate this process and
show how it results in improved event locations and error ellipses.

3.1 Data Set

For our test data set we created a set of 121 synthetic events in North Africa
recorded by a set of 3 IDC primary network stations: CMAR, GERES, and ZAL (Fig-
ure 16). These stations were deliberately chosen to poorly constrain the event loca-
tions to better illustrate the importance of using path correction information; they in
no way reflect the most likely stations to detect events from this area. Our events
span a rectangular grid of 10-30’ N. latitude, 10-30’ E longitude, and are evenly
spaced every 2 degrees. For each event, we first created IASPSl-consistent P arrivals
(with ellipticity and elevation corrections) for each station. Then for each event, we
perturbed the arrival time to each station using an order 50 spherical harmonic sur-
face whose coefficients were randomly generated, and which had been scaled to have
values of up to +/- 2 seconds (Figure 17). We used a separate surface for each station,
and the perturbation value for each event was taken from the value of the surface at
the true geographic location of the test event. In effect, the surfaces represent the
path-specific information not fit by the base model (i.e. the effects of the lateral het-
erogeneity of the Earth). The use of spherical harmonic surfaces as opposed to purely
random noise insures that the perturbations are tied to an underlying process with
spatial correlation characteristics, as would be expected were the perturbations due
to actual Earth structure.

This set of perturbed events should have the proper characteristics for demon-
strating the KBase parametric grid capability. The observed times are inconsistent
with the global one-dimensional model which will be used to locate them, and so
must be corrected to achieve improved locations. Further, because the perturbations
come from known analytic functions, we can compare the interpolated correction val-
ues with the actual values and the error estimates to evaluate the effectiveness of
the interpolation process and the validity of the error estimates.

38

3.2 Re-Locations without Path Corrections

We begin by re-locating each of the events using the IASP base model with
ellipticity and elevation corrections, but no path corrections. For our first case, we do
not use any a priori error information and thus the 95% error ellipses reflect only the
travel time residuals for the final event locations. This is no longer consistent with
operational practices at the IDC, but is useful for illustrating the importance of
including a priori error estimates in the calculation of the error ellipses. The results
are shown in Figure 18. In general, the mislocations increase from NE to SW as the
events move further outside of the aperture of the 3 station network (all three sta-
tions are located in the NE quadrant). The largest mislocation is 270 km for the
event at 10 E, 10 N. The shape and orientation of the error ellipses are controlled by
the network as well, though they are generally so small that they are covered by the
event location symbols. If they could be seen, it would be apparent that their size
increases following the same NE to SW trend as do the mislocations. However, the
error ellipses are much too small (the largest is only 44.6 km) because we have not
accounted for the model error associated with using the IASP model for our per-
turbed data. For 52 of the 121 events (43%), the 95% ellipse does not contain the true
event location. Clearly, this is an unacceptable result.

Next, we repeat the relocations using a priori error information. We assume pick-
ing (i.e. measurement) errors of 0.1 seconds for all arrivals, and use the distance-
dependent IASP modeling errors included within the IASP travel time tables
used at the IDC (Walter Nagy, personal communication). The model error has a con-
stant value of 0.70 s for epicentral distances from 18-112 degrees, which includes all
of our source/receiver combinations, hence for these events model error does not
change with source location or station. We calculate 95% coverage rather than confi-
dence error ellipses (i.e. we assume an infinite number of degrees of freedom) to
incorporate the a priori error information (see Jordan and Svedrup, 1981). In the
location code the measurement and model error are combined to form one a priori
error term for each arrival. The relocation results are shown in Figure 19. The loca-
tions are the same as in the previous case because the data has not changed and
since the model errors are identical for each station, the relative weighting has not
changed. The size of the error ellipses has increased dramatically, however, and now
only 5 out 121, or 4%, of the 95% ellipses do not contain the true event location.
Thus, we see that using the IASP modeling error estimates has made the error
estimates consistent with the true mislocations, which is a significant improvement,
though mislocations have not decreased.

3.3 Ground Truth Events

Let us now suppose that we have available 30 ground truth points for our region.
For our test case, we have randomly selected 30 points from a 1 degree spacing grid
spanning our area of interest (Figure 20). For each of these events the travel time
residual relative to the base model for each station is just the perturbation value

39

from the spherical harmonic surface for that station. We can use these ground truth
points and the associated values and error estimates to construct a KBase paramet-
ric grid data set which can be used to generate interpolated path corrections for any
location using the methodology described in Section 2.

Before doing this, it is important for the reader to understand that the paramet-
ric grid data set created will be a sufficient basis to match the kriged surfaces
derived from the 30 ground truth points, which are not necessarily the same as the
true spherical harmonic surfaces (e.g. Figure 17). The extent to which a kriged sur-
face matches a true surface is dependent on the sampling provided by the ground
truth points; if we have no ground truth points sampling a feature of the true sur-
face, then we certainly cannot expect the kriged surface to match that feature. One
should expect a close match near the ground truth points and a less reliable match
further away from the points, which is, as we shall see, just what the error surface
derived from the kriging indicates.

In the following sections, we follow the example data set through DP and DA pro-
cesses (DS is not discussed). Refer back to the corresponding parts of Section 2 for
details.

3.4 Data Processing

3.4.1 Variogram Analysis
We begin with uariogram analysis. For each of the stations we formed experimen-

tal variograms for the 30 ground truth points. The variograms for all three stations,
as well as plots of the number of point pairs vs. interpoint distance, are shown in Fig-
ure 21. Variograms are notoriously ambiguous, as can be seen even in this case
where we have used synthetic, noise-free data. We “eyeball” fitted the data and
decide on the following parameters for the theoretical variogram for each: CMAR --
nugget = 0.05 s2, range = 5 degrees, sill = 0.60 sec2, curve family = butterworth;
GERES -- nugget = 0.05 s2, range = 5 degrees, sill = 0.40 sec2, curve family = butter-
worth; ZAL -- nugget = 0.05 s2, range = 5 degrees, sill = 0.70 sec2, curve family = but-
terworth. Obviously these choices are non-unique; many other choices could be made
which would fit the observations equally well and which could be used for kriging.
Increasing the nugget will decrease the need to fit the ground truth point values and
hence “smooth” the kriged surface. Increasing the range will extrapolated the values
from the ground truth points further away, i.e it will extend the correlation range.
Increasing the sill will increase the background variance (uncertainty> far away from
all ground truth points.

3.4.2 Kriging
We will assume that we do not have any error estimates for the individual events

and so we take the measurement errors for all residual points for each station from
the square roots of the nugget values derived from the corresponding theoretical var-
iogram. The nuggets are the same for each station here, but typically this would not

40

be true. We have no reason to limit the range of influence of any of the ground truth
points, so we effectively “turn ofr the blending by assigning a very large value (e.g.
99999 km) to the range of the blending function associated with each of the ground
truth points. If desired, separate blending functions can be specified for each data
point but in this case we use the same one for convenience. We use the same butter-
worth function family for convenience as well, though the choice of blending function
family is unimportant due to the large range: the blending function will have a value
of 1 out to (and beyond) the full range of the correlation coefficient function and so
will have no effect.

Figure 22 shows the correction and variance surfaces obtained by using MBK for
an 0.25 degree grid spanning our study area for GERES. Overall, the correction sur-
face is not a close match to the spherical harmonic surface (Figure 1’7.) due to the lim-
ited sampling provided by the ground truth points, but the match is good near the
ground truth points as discussed above. The correction surface returns to zero value
away from ground truth points because MBK is based on Simple Kriging with a zero
mean (see Section 2.1.1.4). The variance surface shows deep wells around the ground
truth points, and a smooth background level, as is typical for kriging. Note that the
background level is 0.40 sec2, and the variances at the ground truth points are 0.05
sec2, as specified. Thus, the variance surface matches the information taken from the
variogram for GERES in Figure 21, and listed above.

3.4.3 Mesh .Refinement
Our next step is to use mesh refinement to create an optimal tessellation to use

for NNI. We specify that the NNI result for any point must match the kriged value to
within 10% and calculate the optimal tessellation for all three stations. We could cal-
culate separate tessellations for each station but choose instead to form one tessella-
tion that fits all three. This proves to be advantageous when the information is used
operationally for event location because it requires only one walking triangle search
to identify the natural neighbors needed to interpolate correction information for all
of the stations as opposed to requiring separate searches for each as would be needed
if each had a unique tessellation. Of course, this also leads to the presence of unnec-
essary points for each station, but this is easily offset by the gain in operational per-
formance. Also, creating separate tessellations for each station actually leads to
more point storage because each tessellation must be stored. Thus, we recommend
combining multiple station and or phase information into a single tessellation when-
ever possible. A much more detailed discussion of single tessellations vs. multiple
tessellations is given in Appendix B.

The tessellation process adds additional points in areas of high curvature where
simple linear interpolation from distant neighbors does not work well. For the first
station, we begin by imbedding the ground truth points within a coarse distribution
of points surrounding our region of interest. The iterative process described earlier is
then run until a tessellation is found which fits the error criteria. Regardless of the
number of iterations and the amount of triangle smoothing which occurs, the ground
truth points will always be included as nodes in the final tessellation (i.e. they are

41

stationary). Once the tessellation for the first station is finished, it is in turn used as
the background for the next station. In our case, the second station has no new
ground truth points, so no new fixed points are added, but this need not be the case;
each station could have a separate set of ground truth points in which case the final
set of fixed ground truth points would be the union. When the ground truth points
are the same, the mesh refinement for each subsequent station tends to proceed
more quickly because the areas of high curvature are near the ground truth points
and so have already been finely meshed during the previous refinements.

The final tessellation and node density for all three stations for our examples is
shown in Figure 23. The total number of nodes in this case is 2027. As suggested
above, the densest areas of tessellation surround the ground truth points due to the
curvature in the correlation coefficient function. The highest densities approach 100
nodes per square degree. If we had specified a smaller error tolerance (e.g. 5%) these
numbers could be much larger. While we produce only one tessellation for all three
stations, we produce separate value, error, and derivative surfaces for each. By sur-
face, we mean the set of values which map to the nodes (see section 2.3). Theoreti-
cally, there is no limit to the number of surfaces which could be mapped to a single
tessellation, though in practice it may make sense to limit them to similar types of ’
data (e.g. all of the P corrections for the primary network) to keep the tessellations
from becoming overly complex.

We examine the relationship between the true kriged surface and the NNI opti-
mal tessellation surface in Figure 24. The top two panels show both surfaces for an
0.25 degree grid . Any differences are obviously too small to easily discern. To high-
light the differences, we plot a difference surface in the lower panel. Note the dra-
matically changed color scaling: values range from -0.02 s to +0.02 seconds but most
are much smaller. Recall that the kriged surface has deviations of up to +/- 2 seconds,
so 10% error is 0.2 seconds. This better-than-specified matching is typical and is due
to the fitting of multiple stations with the same tessellation. Each station adds

I points needed to match the kriged values for the residuals observed at that station,
but because the points added for each station are not the same, the overall set of
points includes additional points per station that lead to greater accuracy than was
specified. Were we to have made an optimal tessellation per station, the misfits
would more closely match the specified 10% error.

Once the tessellation and surfaces have been created, they can be stored and
accessed using the libKB1 interface.

3.5 Relocation Using Ground Truth Information

We relocate the events again, this time using the KBase parametric grid informa-
tion we have created, accessed with libKB1. A few additional parameters are needed
to run the libloc programs (LocSAT or EvLoc) using IibKBI, and these are discussed
in Appendix F. The re-locations are shown in Figure 25, and we have included the
ground truth points for reference. The overall orientation (striking to the NE) and

42

-
a
4
4
4
4

trend (size increasing NE to SW) of the error ellipses has not changed, because they
are determined by the network geometry. Superimposed on this however, are pockets
of dramatic improvement clustered around the ground truth points. The overall
average mislocation has decreased from 58.8 km to 47..0 km, but the most obvious
improvements occur for events near (or on) ground truth events. The mean misloca-
tion for the seven events co-located with ground truth points has been reduced from
42.7 km to 2.1 km. The reason that the mislocations are non-zero, of course, is that
we assigned non-zero measurement errors to each ground truth event residual dur-
ing the kriging, hence the kriged surface was not an exact fit. The size of the error
ellipses for these events has also been considerably reduced, from a mean of 141.9
km to a mean of 50.9 km. These would be significantly smaller if the assumed mea-
surement error for each test event pick were smaller (recall that we assumed 0.10
set).

The sharp gradients in error ellipse size are due to the underlying kriging process
(refer to the error surface for GERES in Figure 22) and are typical of KBase interpo-
lated information. This is probably the most important result obtained from the new
methodology. Using existing techniques to apply path correction information, the
size of error ellipses would not have shown any correlation with the location of
ground truth points because of the use of fitted-surface functions. The new behavior
is more complicated but necessarily so to reflect the uneven spatial sampling pro-
vided by ground truth points.

43

(This page intentionally left blank)

3 Conclusions
The parametric grid capability of the Knowledge Base (KBase) provides a new,

greatly improved method to store and access interpoZatabZe information used in
nuclear event monitoring. This method involves three basic steps: data preparation
(DP), data storage (DS), and data access (DA). The goal of DP is to produce a tessel-
lated representation of an associated value and error surface which can serve as a
basis for the very fast Natural Neighbor Interpolation (NNI) in the DA step. In many
cases, DP will involve the application of Modified Bayesian Kriging to densify the
original data set such that the NNI will yield sufficiently accurate results. The densi-
fied information is stored in the DS step. Finally, in DA, values can be interpolated in
near real-time by making a request through the ZibKBI interface.

Using a synthetic case of observed seismic travel times from a set of know (cali-
bration) events, we have demonstrated the use of our method, starting from the
input data and proceeding from DP to DA. We showed that both event mislocations
and the sizes of the error ellipses are improved by using them. More importantly, we
demonstrated that both the sizes of the mislocation and the size of the error ellipse
are strongly tied to proximity to the calibration data, which must be true and yet has
not been the case with past approaches. Those approaches have relied on using sur-
faces fitted to the correction information and as a result have produced overly
smoothed correction interpolations with poorly determined error estimates.

While our example was limited to seismic travel time data, we fully expect that
the technique can be applied to any of the other types of parametric grid data
expected to be stored in the KBase: e.g. amplitude correction data, azimuth and
slowness correction data. Though the “base model” for each of these differs greatly,
the basic idea of interpolating correction information on top of each seems to be
appropriate for all.

As a final word of caution, we note that while our method should greatly improve
the accuracy of the various processes which use parametric grid information, this is
only true if the underlying data is of sufficient quality. In particular, we note the par-
amount importance of establishing robust error estimates for each ground truth mea-
surement. With the new methodology, the error estimate associated with each data
point strongly controls the influence of that data point on the interpolation for
nearby locations. Inaccurate error estimates will lead to either too much or too little
influence for a given data point, resulting in an interpolation that is either incorrect
or less accurate than it would have been with the proper estimate.

45

(This page intentionally left blank)

References

Adams, R. D., A. A. Hughes, and D. M. McGregor (1982). Analysis procedures at
the International Seismological Centre. PEPI, 30, 85-93.

Barber, B., D. P. Dobkin, and H. Huhdanapaa, (1993). The Quickhull Algorithm
for Convex Hull, The Geometry centre technical report GCG53. The Geometry
Centre, Univ. of Minnesota, Minneapolis, MN 55454.

Cressie, N. A. C. (1993). Statistics for Spatial Data, J. Wiley, New York.

Delaunay, B.N. (1934). Sur la Sphere Vide, Bull. Acad. Science USSR VII: Class.
Sci. Math., 793800.

Fortune, S. (1992). Voronoi Diagrams and Delaunay Triangulations, Comput-
ing in Euclidean Geometry, eds. Du, D.Z., and Hwang, F., World Scientific.

Hoppe, H. (1994), Surface Reconstruction From Unorganized Points, PhD The-
sis, Department of Computer Science and Engineering, University of Washing-
ton.

Jones, R. E. (1979). QMESH: A Self-Organizing Mesh Generation Program,
Sandia Report, SLA-73-1088.

Jordan, T. H. and K. A. Svedrup (198 1). Teleseismic Location Techniques and Their
Application to Earthquake Clusters in the South-Central Pacific, Bull. Seismol. SOC.
Amer., 71, 1105-l 130.

Kitanidis, P. K. (1997). Introduction to Geostatistics, Cambridge, Cambridge.

Lawson C. L., 1977, Software for Cl surface interpolation, Mathematical Soft-
ware III, ed. Rice. J., Academic Press, New York.

Omre, H. (1987). Bayesian Kriging -- Merging Observations and Qualified Guesses in
Kriging, Mathem. Geol., 19,25-29.

Preparata, F. P., and M. I. Shames, (1985), Computational Geometry: an Intro-
duction, Springer-Verlag, New York.

Sambridge, M., J. Braun, and H. McQueen (1995). Geophysical Parameterization
and Interpolation of Irregular Data Using Natural Neighbors, Geophys. J.
Int., 122, 837-857.

Schultz, C. A., S. C. Myers, J. Hipp, and C. J. Young (1998). Non-stationary Bayesian
Krigiug: a Predictive Technique to Generate Spatial Corrections for Seismic Detection,
Location, and Identification, Bull. Seismol. Sot. Amer., 88, 1275- 1288.

- Shepherd, E., R. G. Keyser, H. M. Armstrong, E. P. Chael, and C. J. Young (1998).
Data Dictionary for the CTBT Knowledgebase: Phase 1 Release, Sandia
Report #SAND98-1260.

.
/ Sibson, R. (1980). A Vector Identity For The Dirichlet Tessellation, Proc. Cam-

. . ,: ‘. bridge Philosphical Society, 87, 151-155.

i .*
i Voronoi, Mg.G., (1908), Nouvelles Applications Des Parametres Continus A La

i Theorie Des Formes Quadratiques, J. Reine Angew. Math., 134, 198-287.

I ‘.

i Wackernagel, H. (1995). Multivariate Geostatistics, Springer, Berlin, 256 pp.
I
I- -I Watson, D. F., (1992). Contouring: A Guide to the Analysis and Display of Spa-
/ ..,-. tial Data, Pergamon, ISBN O-08-040286-0,321 pp.
I
1 :.:.
1 .’ ..

,48

Data Processing

l-l Raw
Data

Data Access Data
Storage

Figure 1. The Knowledge Base parametric grid model
The model shows how raw data is transformed into parametric grid information which in turn supports requests for
interpolated information for KBase clients, such as an event location algorithm or a magnitude algorithm,

49

Original Data Data Densification (Kriging) Operational Interpolation

Figure 2. Densifying data for fast interpolation of value and error estimates
(Left) Original data -- The stars and error bars indicate raw data points,e.g. corrections to base model travel times for a
given seismic phase between the indicated source location and a given station. The data are unevenly spaced, which
may lead to problems with error estimates for interpolated points which are not nearby, such as the one indicated
with the white diamond. (Middle) Continuous data -- Kriging can be used to “densify” the data set and produce robust
error estimates for new locations so that any potential interpolation location will be surrounded by nearby points.
(Right) Interpolation -- Combining the original data points and the new kriged data points gives us a more uniform
spatial sampling, which allows us to use a simple interpolation scheme to quickly deliver accurate interpolated values
and error estimates using only nearby points.

50

4- sill

\/ c H--N / I / ‘3 I 4’ ’ 1 L 4 t I
nugget-+- I /

II
\ /

distance

Figure 3. Observed variogram with fitted theoretical variogram
The observed variogram is created by plotting the squared difference for each pair of observations. The theoretical
variogram is fitted to this, by focussing on the nugget, range, and sill values.

51

Variogram - Covariance

distance distance

Figure 4. Variogram vs. covariance
The variogram is essentially the inverse of the covariance: increasing distance increases the variogram but decreases
the covariance. Roughly speaking, one can equate the variogram with dissimilarity and the covariance with similar-
ity.

52

Existing Tessellation

Insertion
Polygon

New Node

c)

Edges

b)

Figure 5. Incremental node insertion
a) Shows the original tessellation and the new node to be inserted into the tessella-
tions, b) depicts circum-circle containment of the new node by each of the highlighted
triangles, c) illustrates the “insertion” polygon after the containing triangles are
removed, and d) shows the new tessellation after the new node is connected to each
node of the insertion polygon.

53

New i
Tessellating (Step 1)

It- Nodes IA Insert New Nodes: Tessellate
-__-.-- __- .-__

\ j
--------1

New Tessellation I ______-. .-_- . ..__ -__---_---.- _.-- 1

(>>/
‘1 __- New Smoothed Tessellation _-~--- 1 /

NNI Surface DabJ ~____.__... -.-__-

--.
Curvature Refinement (Step 4)

Determine Curvature
(k) At Each Node

a

I-

A&
Nodes 1 Yes

\
+ ki --

Data Flow
Process Flow

Add
Nodes

/Accuracy Refinement (Step 5)

Figure 6. Mesh refinement process and data flow diagram

54

IBase

/ Nodes Triangles \

/
Tessellation 3

/ Nodes’ : Triangles

Figure 7. Abstraction of KBase storage for multiple tessellations
The KBase can store multiple tessellations each with it’s own geometric definition
(nodes, and triangles), which defines spatial location and connectivity for the mesh,
and surface ownership, which contain the value surfaces created by the kriging/
mesh refinement process.

c

1 55

Nodes Triangles- \

Figure 8. Abstraction Of KBase tessellation components
The KBase Tessellation contains geometric data that define the spatial location
(nodes) and mesh connectivity (triangles) of the tessellation. The tessellation also
contains an arbitrary number of unique surfaces that contain discrete values for
each node in the tessellation. Each surface generally represents a unique basemodel,
station, phase designation. The values can be any arbitrary parameter (or several of
them jointly) such as travel-time, amplitude, azimuth, etc., and their associated sur-
face derivatives and errors.

56

Surface Data Designated For Fetch From The KBase \ 9

Surface Data NOT Designated For Fetch From The KBase 63

Figure 9. Surface Fetch Initialization (SFI)
Calls from the client application through libKB1 can designate specific surfaces for
access while restricting others. Here our imaginary KBase has been ordered to fetch
surfaces 1, 2, 3, 5, 7, 9, 10, and 14 while not fetching surfaces 4, 6, 8, 11, 12, and 13.

Data Cluster 1
x Client Event Location 1
l Accessed Nodes (Cluster

Data Cluster 2
x Client Event Location 2

1)

l Accessed Nodes (Cluster 2)

Retrieved Mesh

Figure 10. Data Cluster Access
Data cluster access occurs when the SDE utilizes a predefined “data cluster” (a
cookie-cutter shaped like a circle in this example) to access data in the neighborhood
of a guess location requested by the client application. Only nodes and triangles
inside of the data cluster are accessed. Subsequent data cluster accesses (data clus-
ter 2) return the set difference between the current data cluster and all previous
data cluster accesses.

58

KBase

Surface Data Designated For Access From The KBase i cl
Surface Data NOT Designated For Access From The KBase

Data Clusters Accessed From Designated SF1 Surfaces.. ’ * 33

Figure 11. SF1 Surface Data Cluster Access
Data cluster access affects all SF1 surfaces simultaneously. In the example above the
total data retrieval from the KBase following three data cluster accesses is the sum
of the data contained in the union of the three data clusters as retrieved from each
accessible surface.

59

KBase

‘Tessellation 2 \
Nodes Triangles ‘\ /I Nodes

SF1 Surface /? .. ! J

Surface Data NOT Designated For Access From The Base?g$j

SF1 Surface Designated For Interpolation Processing 0 -‘I

Figure 12. Surface Association
Calls from the client application through libKB1 can designate specific SF1 surfaces
for interpolation processing. These surfaces represent those that the client applica-
tion has determined as associated with the current event location analysis. In the
example above surfaces 3,7,9, and 14 have been designated for interpolation pro-
cessing.

60

Search Point
Containing

Search Path

Initial “Guess”

Figure 13. Walking Triangle Search
The search progresses from an initial guess to the containing triangle by continually
evaluating whether the search point lies inside of or outside of the current triangle.
Outside determination is accomplished by evaluating whether the search location
lies to the “left” or the “right” of a counter-clockwise oriented triangle edge. If the
point lies to the “left”, the next edge of the triangle is subjected to the test. If the
point lies to the right, however, the search shifts to the adjacent triangle that shares
the edge undergoing the test and the process is repeated. The containing triangle is
found when all edges test “left”.

61

. _ _ _ _ _ _ Existing Triangle Edge
.m. New Triangle Edge

Existing Voronoi Polygon Edge
New Voronoi Polygon Edge

* Interpolation Point
l Tessellation Node

“5

wi = Natural-Neighbor Coordinate
(Weight) Of The ith Node

Figure 14. Natural-Neighbor weight determination
The natural-neighbor interpolation is accomplished by determining the weights that
must multiply the surface values assigned to each of the neighbor nodes of the inter-
polation point. The weights are determined by performing a virtual insertion of the
interpolation point into the existing mesh, then examining the polygonal areas of the
mesh dual called the voronoi polygons. The weights are calculated as a ratio of the
area of the overlap between the existing voronoi polygon of each neighbor node with
the new voronoi polygon formed from the virtual insertion of the interpolation point
to the entire area of the new virtual voronoi polygon.

62

ellipticity

elevation

?-
near receiver

path

Figure 15. Base Model + Corrections approach to improving event locations
Travel times taken from a radial earth model (e.g. IASP91) are corrected for various
discrepancies between that model and the real Earth: shape is elliptical, not round;
stations are sited at different elevations, not all at a common height; non-radially
symmetric structure occurs beneath stations affecting all paths to that station; non-
radially symmetric structure occurs elsewhere along paths from sources to receivers
leading to path-specific corrections.

63

Kelly Navarro

Kelly Navarro

i

7 .

Figure 18. Re-locations of 121 perturbed events, no model error
The true event locations for the 121 test events are indicated with pink squares. The
re-locations are shown with red circles. Their 95% confidence ellipses are also shown,
but are generally too small to discern.

66

Figure 19. Re-locations of 121 perturbed events, IASP model error
The true event locations for the 121 test events are indicated with pink squares. The
re-locations without use of the KBI are shown with red circles. The 95% coverage
ellipses are also shown. The apriori error used accounts both for measurement and
modelling error, in this case from IASP91.

67

Figure 20. The 30 randomly selected ground truth points
These locations were randomly selected off a 1 degree grid spanning latitude lo-30
degrees North, and longitude lo-30 degrees East. Note that only where there is a
ground truth point can we expect to recover with kriging the true surface shown in
figure 17.

!
68

iif-:.‘,.:1
0 4 6

distance lag. h

Figure 21. Variograms for CMAR, GERES, and ZAL
Observed variograms (above) and plots of number of point pairs vs. bin distance
(below) for: (a) CMAR; (b) GERES; (c) ZAL.

69

Correction

Variance

Figure 22. Kriged correction and variance surfaces for GERES
Correcrion (Top) and Variance (Bottom) surfaces for GERES derived by krigin from
the 30 ground truth events. The units are seconds for correction, and second $for
variance. Note that the kriged surface matches the true surface in Figure 17 only
near the ground truth points, and that the variance (error) surface indicates that our
confidence in the interpolated values decreases quickly away from the ground truth
points.

. .
811

Figure 23. Final tessellation and node density for 10% error (maximum)
(Top) The final tessellation developed to fit the 30 ground truth points for al! three
stations. The locations of the ground truth points, which were flxed, are indicated
with blue circles. (Bottom) A log plot of the nodal density (units are log #nodes per
square degree), showing that the nodes are densest in the regions of high gradient.

fig-m-e 24 Comparison of Kriged and NNI surfaces for GERES
(T p 1 ft) &iged surface from the 30 ground truth points for an Cj.25 degree grid; (top
rilht)eNI*jI surface for the same grid using the optimal tessellation calculated for
10% error; (bottom) Difference between the two surfaces -- note the change in scale.

Figure 25. Relocations of 121 events, KBI used
The 30 ground truth event locations are indicated with black circles, the 121 true
test event locations are indicated with pink squares, and the 121 test event re-loca-
tions with the KBI used are indicated with red circles. The 95% coverage ellipses for
each relocation are also shown.

Figure 25. Relocations of 121 events, KBI used
The 30 ground truth event locations are indicated with black circles, the 121 true
test event locations are indicated with pink squares, and the 121 test event re-loca-
tions with the KBI used are indicated with red circles. The 95% coverage ellipses for
each relocation are also shown.

Appendix A: Modified Bayesian Kriging

A-l Introduction

This appendix describes the derivation of a modified kriging technique to be used
to generate interpolated data and error estimates for data sets to be included in the
DOE Knowledge Base. The technique was developed by personnel from Sandia
National Laboratories, Lawrence Livermore National Laboratories, Pacific North- -
west National Laboratories, and the Air Force Technical Applications Center
(AFTAC). It was developed to satisfjr several major requirements of the Knowledge
Base data sets that existing kriging methods do not satisfy very well, or at all. These
requirements include:

The capability to produce smooth (continuous first and second derivatives) value and vari-
ance surfaces to meet the needs of the current seismic event location algorithm (EvLoc).

The capability to model data variance independently for each point or a group of points in
such a way that the interpolation surface follows the “good” points more closely than the
“bad” points. This provides a mechanism to combine all available data (e.g. earthquakes and
nuclear tests)

The capability to vary the range of influence of each data point or group of data points, inde-
pendent of the quality of the data point

The capability to make both the interpolated value surface and variance surface blend to
background values beyond the range of influence of any observations, so that continuity
from regional to teleseismic domains can be assured.

The capability to provide smooth and continuous residual-to-zero and error-to-background
transitions across user specified boundaries (e.g. fault! or tectonic provinces). This allows
the modeler to control the influence of subsets of data and yet still assures continuity across
the boundaries.

Using any of several types of kriging to form a basis for gradient-modified NNI, we
can satisfy the first requirement. To meet the other four requirements we choose to
work specifically with Simple Kriging (kriging with known mean) and make two
major modifications: the incorporation of measurement (i.e. uncorrelated) error by
deriving the Simple Kriging equations using covariance instead of variogram func-
tions, and the introduction of blending or damping functions through Bayesian
methodology, For clarity we will discuss each of these modifications separately, ulti-
mately building up to the complete proposed system.

75

A-2 Derivation

A-2.1 Simple Kriging Equations with Uncorrelated Error

We begin with a derivation of the Simple Kriging equations with uncorrelated
error. We choose to base our derivation on Simple Kriging rather than Ordinary
Kriging because we assume that the mean is known.

Consider a random function 2 of spatial coordinate vector J? from which any sys-
tematic trend has been removed. Then Z can be represented as some stationary spa-
tially correlated component (0) plus a non-correlated component (5), i.e. noise):

-m = o(a + id% (EQ A-1)
We will assume that both 0 and 5 are zero mean, which implies that the data has
been demeaned. Suppose that we know the value of Z at several points and that we
wish to predict the value of Z at an arbitrary point p. This is a standard interpolation
problem, and one solution is to let our predicted value Z*(2P) be a linear weighted
sum of the values of Z at the known points. For Simple Kriging (i.e. kriging with
known mean), the interpolation equation is

Z*(J$) = m+ i~JZ(2~)-rn] (EQ A-2)
i=l

where m is the mean of Z. For our derivation, Z is assumed to be zero mean so we can
rewrite (A-2) as

z; = i wizi (EQ A-3)

i= 1

where we have written Zi for Z(pj) for compactness and will continue to do so
henceforth.

Any number of interpolation methods can be used to find the “best” weights Wi .
For kriging we seek to find the weights that minimize the variance of the prediction
error at TP. The prediction error variance is

n 2

a~~ = EZP - C WiZi @Q A-4)

i= 1

where E indicates the expectation operator, and we have assumed that the predic-
tion error has zero mean. The minimization of this equation is the basis for kriging.

At this point in most standard derivations, the variance equation is rearranged
into terms involving differences between the points Zip Zj, and Z,, so that these dif-
ferences can be replaced with theoretical variogram functions. We choose not to do
this because to use a variogram, we must assume that all of the points have the
same variance, and this would violate the second of our requirements. Instead we
will work with covariances which will allow us to individually specify the variance
for each point.

We begin by writing out the square on the right hand side of equation (A-3)

I _ yu o$ = E Z; + i i wiwjZiZj- 2 i wiZpZi (EQ A-5)

q

i= lj= 1 i= I

We will rewrite this equation, making appropriate substitutions for each term on
the right hand side. For the interpolation point p, we assume that Z, = 0, only, i.e.
&, = 0, so the predicted value will have no uncorrelated component. Also, we will
use the zero-mean stipulation above to make the substitutions

E(OiOj) = cov(Oi, Oj) @Q A-6)

EtSiSj) = cov<Ci, Sj) (EQ A-7)

Using Equation (A-6), we can re-write the expected value of the square of the value
at point p as

E{Z;} = COV(@~,@~) (EQ A-8)

= 020,

Using (A-6) and (A-7) the expected value of the product of the values at i and j can be
rewritten as

E{ZiZj} = E{OiOj + 5i5j ' Oi5j ' Ojsi} = COV(Oi, Oj> ' COV(5i, si> (EQ A-9)

= coV(0,,0j)+COV(5i,5j)

= cOV(Oi, Oj) ' 6,05,~5,

where 6, is the de1 operator (i.e. = l’when i=j, = 0 otherwise), and the cross terms
involving both 0 and 5 have dropped out because the &‘s do not correlate with any-
thing but themselves.

Similarly, the expected value of the product of the values at i and p is

E{Z$i} = E{ OpOi + @psi> (EQ A- 10)

= cov(Op, Oi)

Substituting (A-81, (A-91, and (A-10) into (A-5) we get

02 =
ep Cii, + i i WiWj(COV(Oip @j) + 6QOc.Gg,) - 2 i wi(cov(Op, 0,)) (EQ A- 11) 1 J

i=lj=l i= 1

We seek the particular set of weights which will minimize CYST, so we will differ-
entiate (A-11) with respect to wi and set the result equal to zero. This is the point at
which an unbiased constraint (i.e. c wi = 1) can be introduced if desired, using the
standard Lagrange parameter. i= 1

For our derivation, we do not choose to do so.

Now we take the derivative of (A-11) and set the result equal to zero, to get the
kriging equations:

~ Wj(COV(Oi, Oj) + 6 ij”&ot) = cov(oJ% @j> (EQ A-12)

j=l

Substituting this result into (A-11) we find the equation for the variance

n
02 = 2

ep %p - C WjCOV(Op, Oi)

i= I

(EQ A-13)

Using the relationship cov(X, Y) = pxY~x~Y, where p is the correlation coeffi-
cient, we can rewrite these equations as

and

n
02 = 2 ep %p- c wip@ @.“@po@.

P, I

(EQ A-14)

(EQ A-15)

i= 1

To use these equations to find estimates for Z, and G:, we must supply values for
~o.o., 00. and 05. - osi is just the uncorrelated standard error associated with each
point i, i:e. the measurement error. The presence of this term allows us to satisfy the
second of our requirements. The other two terms -- the correlation coefficient func-

78

tion between points i and j, and the variance of the values at those points -- can be
taken from a variogram calculated for the data set to be kriged (Fig. A-l).

Xi11

I
I / Range

h

Figure A-l. !I’ypical Variogram (with zero nugget)

Essentially, to get the correlation coefficient function we ignore the nugget, normal-
ize and flip the variogram function. The correlation coefficient function then scales
from 1 to 0 over the range of the variogram. Thus, the value for pe,e, depends only
on the distance between Zi and Zj. The <re. terms are all the same <ile: independent of
i) and can be taken from the sill value of the variogram (i.e. the background variance
due to the correlated processes).

79

A-2.2 Correlated Variance vs. Uncorrelated Variance

Before introducing the Bayesian modifications, we first want to clarify the differ-
ence between the variances of the two different types of processes referred to in
Equation (A-l): variance due to a correlated random process and variance due to an
uncorrelated random process. To understand the difference, let us consider a few
simple examples.

First, suppose that we have a model that can exactly predict the travel time
between any two points in the Earth, and assume that we have a seismic event
whose location is known perfectly, but for which the arrival observed at a given sta-
tion is emergent (i.e. the exact timing of the first arrival is ambiguous). The residual
time (relative to our model) measured for this arrival is non-zero due to the uncorre-
lated random component which we refer to as measurement error. The measurement
error will have no spatial correlation from point to point. For example, it is entirely
possible that another event co-located with the first event might have a very impul-
sive arrival at the same station leading to a trivially small measurement error: the
measurement errors associated with the two points are completely uncorrelated.
Taking a large set of such event points observed at the station, we can establish the
variance and the covariance due to the measurement error. We will find that the
covariance between different points is zero: i.e. the random process has no spatial
correlation. If we instead consider a case where the arrival is impulsive (i.e. mea-
surement error free) but the assumed location is incorrect, the situation is essen-
tially the same (unless the mislocation is systematic and can be correlated from
event to event). The net effect is again to introduce a random uncorrelated process
into the travel time residual, in this case due to the mismatch between the true loca-
tion and the assumed location.

Now let us consider an example of a correlated random process. Suppose that our
model does not exactly predict travel times, e.g. it assumes a radial Earth, but that
in fact the Earth has lateral heterogeneity (the true situation!). Now assume that we
have a set of events for which the locations are known exactly (e.g. nuclear explo-
sions identified by satellite photos). If we calculate the travel time residuals for the
events they will be non-zero and again we can measure the variance and the covari-
ante. In this case, the covariance will depend on distance (and location) indicating
that the “random” process accounting for the non-zero values is spatially correlated.
This is the variance due to the correlated random process (i.e the lateral heterogene-
ity of the Earth).

In general, of course, both types of processes are present. Even if we use a more
detailed model than a radial model such as IASPEI ‘91, some component of the true
structure will go unmodeled and this will lead to the presence of a spatially corre-
lated random process. Conversely, many of the event locations will not be known per-
fectly and even for those that are, travel time picks will have some amount of
measurement error, so an uncorrelated random process will also be present.

80

I -
h

A-2.3 Bayesian Modification of the Uncorrelated
Blending Functions

Error:

With our derivation of the equations for Simple Kriging with zero mean in terms
of variances and correlation coefficients, we now have a means to calculate the inter-
polated residual at any arbitrary point such that the second of our requirements is
met. This technique will work well when interpolating between points but will fail to
meet our third requirement away from points. Further, at present, we have no means
to control the range of influence of each point, as is needed to meet the fourth
requirement. We can meet both requirements by modifying the kriging equations
using a Bayesian approach.

Following the lead of Omre (1984), we assume that covariance can be written as

coy& MC& z,> = covz,~tz,, 2,) + cov&qp z,> (EQ A-16)

where M refers to the a priori model, and Z 1 M is “Z conditional on M”. This equation
says that the covariance for the joint distribution of the blended random process Z
and the model, M, is equal to the covariance for the conditional distribution of Z
dependent on M plus the covariance for the model M. The purpose of introducing
Bayesian methodology is to form a smooth transition between modeled and empirical
behaviors; we want the previously derived kriging equations to apply when data
sampling is good, but we also want to introduce a modeled behavior when data sam-
pling is not good. If we can find expressions for covZ&Za, Z,) and covM(Za, Z,) , we
can combine these to get covz M(Z,, Z,) and substitute this expression into (A-14)
and (A-15) to get Bayesian kriging equations.

To figure out what the expressions must be, let us state the desired behavior. If
the interpolation point is close to a data point, then the model should have no effect
and equations (A-14) and (A-15) should apply, that is the covariances should be as
expressed in our derivation. However, as the interpolation point moves far away
from data points, the covariances from our derivation should fade to zero and the
covariances should come from the model instead. We will provide expressions which
accomplish this below, but first we must introduce the concept of a normalized blend-
ing function for each data point i which smoothly transitions from 1 to 0 over some
range r as a function of increasing distance from the data point i to the interpolation
point p. We denote this function as Bi(l2i - ppl, ri) for the ith point evaluated at dis-

81

tance lx?i - YPl with a range of ri. For compactness, we will refer to this function as
Bjp . Figure (A-2) below illustrates a typical normalized blending function.

0
h

Figure A-2. Normalized blending function
The blending function is equal to 1 at h = 0, and transitions to zero at h = ri, the
range of the ith data point.

Using this function, we write expressions for conditional and a priori covariances as

COV~~~(O, Oj> = B~~B~~[c~v(O, O,)l (EQ A-17)

COVM(O, oi) = 6ijCOV(Oi, oi)[1 -BipBip] (EQ A-18)

covz,&, kj> = BipBjpkovt~~~ $>I (EQ A-19)

COV&6, Cj> = ~~cov(S~ cj> E l- BipBjpl (EQ A-20)

The a priori model only specifies non-zero covariances between a point and itself (i.e.
variances); all cross terms (covariances) are zero. Thus the modeled behavior is that
there is no correlation between data points. Further, the model terms grow away
from data points, while the conditional terms shrink. Consider the combined covari-
ante behavior as defined by (A-16) with these definitions. When interpolation point p
lies on top of a data point i, the blending is minimal (i.e. Bip = 1) and the model term
contributes nothing, as desired. Conversely, when p is far from i, blending is maxi-
mal (i.e. Bi, = 0), and the blended portion of the model term cancels out the condi-
tional covariance (which is also blended), leaving only the unblended estimated
background variance from the model. Thus, we have achieved the desired behavior.

Using equations (A-17) through (A-20) and recasting them in terms of correlation
coefficients and variances, we get the Bayesian version of (A-14)

n

B. p
JP QiQi Oi Qj o- 0 +“~[‘-BipBjpl~~,~ o~,~o,

lJ’ ’ J
+6..B. B. cr Q +&.[l-B. B.]CT CT

‘I ‘P JP 5,s cj ‘P JP Si cj
(EQ A-2 1)

= BipBppPe 0.00 00 +‘ip[l-B. B IP
PI P i ‘P PP QpQioQpGQi

which with some cancellation of terms can’be rewritten as

82

n

CC
wj B. B. p

j=l

up JP ~~
1

(EQ A-22)

= BipBppPo p i QpoQi Q o
+siPrl-B. B lp ‘P PP QpQicQpoQi

This equation is deceptively complex looking: notice that the second two terms on the
left hand side are zero except when i = j, i.e. on the diagonaZ of the matrix. The off-
diagonal terms are described completely by the first term. Similarly, the second term
on the right hand side is zero except if i = p, i.e. if the interpolation point coincides
with one of the data points. Further, if i = j (on the diagonal of the matrix) and/or i =
p (interpolation point on top of a data point), additional terms can be cancelled.

Using the same substitutions, we can obtain the Bayesian version of (A-15), the
equation for the variance of the error estimate at point p

n
,2 = O2

ep Qp-
C-C

wi B. tp B

i=l

pppQpQioQpoQi + ‘ip” - BipBpplPQpQio@poQi 1
(EQ A-23)

Again, the equation appears more complex than it is: the second term in the summa-
tion is zero except if i = p, which need not be true for a given point p.

A-2.4 Blending Across Boundaries

We have now satisfied all of the requirements except the fifth. This constraint is
solved by imposing new conditions on the blending functions. These conditions
impose rapid transitions to the 0 wherever boundaries are crossed. This “patched”
transition is illustrated in Figure (A-3) below.

0

; Crosses
oundary

“Rtr.h& Blending
on

Standard Blending

Boundary Transition Zone

83

Figure A-3. Typical Region Boundary Blending “Patch”

Using this approach will force residual blending functions to fall to zero as bound-
aries are crossed. These transitions are continuous and occur over a finite transition
zone that occupies both sides of crossed boundary. These transition zones can be
made as steep or shallow as the user likes to control the influence that points have
on one another if they lie on opposite sides of a defined boundary.

84

Appendix B: Mesh Refinement
The goal of mesh (tessellation) refinement is to construct a minimal basis for per-

forming fast natural-neighbor interpolations (NNI’s) that produce values within a
prescribed error bound of the kriged dataset surface. This is accomplished by form-
ing an irregular grid with mesh spacing proportional to the curvature of the kriged
surface. The irregular grid need have no more points than are required to ensure a
specified level of accuracy in the NNI. Furthermore, the irregular grid is just as eas-
ily constructed on the surface of a sphere as it is in a flat plane. For graphical sim-
plicity we illustrate the flat-plane construction technique here.

-_

PI
II
m

m
Q
9

In this appendix we will begin by describing the mesh refinement methodology in
more detail. This discussion will include the primary five step algorithm used to con-
struct a refined tessellation from a previously specified continuous surface (the
kriged dataset surface). Next, we will examine the effect on the refined mesh when
multiple surfaces are represented on a single tessellation. We shall see that it can
have an apparent negative impact on mesh density (increasing) while actually
improving the computational capability of libKB1 relative to both data access and
storage efficiency, and containing triangle search performance. Finally, we shall
examine the effect on mesh density caused by modifications in the mesh refinement
relative error parameter. But first, lets examine the mesh refinement algorithm in
greater detail.

B-l Mesh ‘Refinement Methodology

The mesh refinement algorithm begins by prescribing a minimal set of nodes that
define the boundary of the tessellation and include all of the dataset locations where
known values exist (on the surface of a sphere a global grid is constructed which has
no boundaries). Once the initial nodes are defined an iterative five step refinement
loop is entered that adds nodes to the tessellation until the interpolation error is less
than the prescribed accuracy everywhere on the dataset surface.

The five iterative steps are:

1. Tessellating
2. Smoothing
3. Kriging
4: Curvature Refinement
5. Accuracy Refinement

The first step involves connecting all the nodes together to form a triangular tes-
sellation using a standard Delaunay tessellation technique such as incremental
insertion (described in section 2.1.2). Step two involves smoothing the triangles (i.e.
moving the nodes, excluding the original data and boundary nodes), using a length-
weighted Laplacian smoother to remove poorly formed triangles. Next, (step 3) a

85

vlaue is assigned to each new node by performing Modified Bayesian Kriging calcu-
lation. Then (step 4) all nodes that exceed specified surface roughness requirements
are split by inserting a new node at the mid-points of the edges that share the rough
node. Finally, (step 5) all remaining triangle edge midpoints and centers are interpo-
lated using a gradient-modified NNI and kriged using the Modified Bayesian Kriging
algorithm, after which differences between the two methods are recorded. New
nodes are created for insertion into the tessellation at all edge and triangle mid-
points for which the differences exceed the specified relative error tolerance between
the interpolated and kriged values.

Steps 1 through 5 are repeated in an iterative fashion until all relative error and
surface smoothness requirements are satisfied. In the following subsections we shall
describe each refinement step in greater detail, including the initialization step,
commonly referred to as step 0.

B-l.1 Mesh Initialization (Step 0)

An initial tessellation must be fabricated to act as a starting framework for the
refinement process. The initial tessellation contains two sets of nodes. The first is a
very coarse regular grid that effectively defines the boundary of the region to be tes-
sellated and prescribes the minimum nodal density to be used throughout the tessel-
lation; All interior nodes (those not on the region boundary) in the coarse mesh are
allowed to move throughout the refinement process. The tessellation region’s bound-
ary is generally defined as a rectangle (planar definition) and the nodes that define

. . . . : the corners of that rectangle are always fixed. All other boundary nodes are con-
strained to float along their respective boundary axis only.

The second set of nodes in the initial tessellation is the set of actual data loca-
tions used as the basis for creating the Kbase dataset (i.e. the Kriging raw or .
“ground truth” data). These nodal locations will remain fixed throughout the mesh
refinement process. The raw data are included as nodes for two reasons. First, if they
are not included and the kriged surface possesses variation much smaller than the
average triangle size in the coarse mesh, then it is possible that the curvature and
accuracy tests will not sense the minimal variation at their respective discrete test
positions (triangle centroids and edge mid-points). In other words, if the spatial
range of the surface variation is much smaller than the covering areas of the coarse
triangles used to represent the surface, the refinement tests may fail. Since kriging
generally forces maximum curvature on or near it’s raw data points one can be guar-
anteed that the initial mesh will capture all of the large magnitude variation if the
raw data is included. The second reason concerns the need of researchers and ana-
lysts to preserve the original data points. It is easier to recover the values for these
points if they are actually assigned to a distinct nodal position within the tessella-
tion. Figure B-l shows a typical initial nodal distribution before the tessellation is
generated that connects the nodes.

86

--
4
4 -
a -
1 -
4 -
4

Once an initial set of nodes has been defined the algorithm enters the main
refinement loop. The first step in this loop is to tessellate the nodes which creates the
triangles establishing the mesh connectivity.

B-l.2 Tessellating (Step 1)

Proper implementation of an NNI requires that a Delaunay tessellation be used
to form the node-to-node connectivity information (Delaunay, 1934). Recall from sec-
tion 2.1.2 that we chose an “incremental” insertion algorithm to perform the
Delaunay tessellation construction. The incremental algorithm requires that each
new node be added one at a time and does not necessitate that the entire tessellation
be re-built when new nodes are added at each refinement iteration or when existing
nodes are moved in the smoothing step (next section). Figure 5 of section 2.1.2 illus-
trates the four- step process required when “incrementally” inserting a new node into
an existing tessellation.

This approach (incremental) lends itself superbly to the mesh refinement algo-
rithm which by its very definition is an incremental node addition algorithm. During
this step in each iteration, new nodes created in the previous iteration (during steps
4 and 5 described below) are added to the existing tessellation. Figure B-2 shows an
example tessellation just prior and just after insertion of new nodes from the previ-
ous iteration. Notice that some of the triangles formed after inserting the new nodes
can be quite distorted. The next step in the refinement algorithm is used to help
eliminate most of the triangle distortion thereby producing a smooth and uniform
change in triangle density throughout the mesh.

B-l.3 Smoothing (Step 2)

Although Delaunay tessellations form the best shaped triangles possible they are
formed under the constraint of a prescribed nodal distribution. By modifying the
nodal distribution through the use of smoothing techniques, the triangle shape can
be improved upon further and the transition in triangle sizes through regions of
changing nodal density can be made much smoother. The smoothing process can be
accomplished in many ways but the most common (in 2D) is some form of Laplacian
smoothing. Laplacian smoothing modifies the coordinates of a particular node by
assigning the coordinates to a normalized-weighted linear combination of its nearest
neighbor coordinates. The weight function used to multiply the neighbor coordinates
can be almost any quantity and for standard Laplacian smoothing the weight func-
tion is simply 1 (i.e. the new location is just the average of the neighbors coordi-
nates). Unfortunately, simple weighting is not always robust (convex boundaries are
handled improperly) and other weighting forms exist that, in general, do a better job.
Typical robust weight functions include node-to-node neighbor length or triangle
areas. The mesh refinement algorithm defined here uses the length-weighted Lapla-
cian Smoothing technique (Jones, 1979) exclusively in the smoothing process. The
length-weighted Laplacian smoothing for node, iii , is defined as

4 81

1* n. =
1 L.A.

ZJ J
1

(EQ B-24)

where the nodes &j are nearest neighbors of node hi and the lengths (or weights),
Lij, are defined by

Lij = p+pijl)

which are simply the distances between the i’th node and its j neighbors. The super-
script (*>, in equation B-l above, indicates that this is an update over the original
position used in the weight length calculations (the Lij >. Figure B-3 below illustrates
the movement of a single node based on a length-weighted Laplacian smooth.

Smoothing is generally a Gauss-Side1 iterative process where each node is
updated sequentially using previous smoothing updates of its neighbors. The neigh-
bors themselves may also be recently inserted nodes in need of smoothing. The list of
nodes requiring smoothing is looped over several times until the difference between
the new and old positions of each node is less than some tolerance. Mathematically
we can write

iterate over i until I I fi*
1

-iii IE , for all i. (EQ B-26)

Figure B-4 shows the example tessellation from Figure B-2 following the new
node insertion and the subsequent smoothed mesh after the mesh smoothing step is
performed. Notice that most distorted triangles are reformed and some edge connec-
tions are modified to force the mesh to adhere to the Delaunay prescription. Also,
notice that the fixed data nodes remained fixed and are not modified during the
smoothing process. Once the new nodes have been smoothed we are ready to krig
those nodes to obtain value and error estimates at each new location.

B-l.4 Kriging (Step 3)

Recall from section 2.1.1 that kriging is a way of calculating values from a dataset
at an arbitrary location that also yields an accompanying error estimate. Since the
NNI requires these values at all tessellation node points, every new node added dur-
ing the previous iteration, plus any existing nodes that moved during the previous
smoothing step, must be kriged during the current iteration. Note that the entire
tessellation is NOT re-kriged during each iterative pass. Only new insertion nodes or
existing nodes that moved during smoothing need to be kriged. The resulting kriged
value, error, and longitudinal and latitudinal derivatives (formed by kriging extra
points and forming differences) are saved for each kriged node.

88

Although step 3 is the middle step of the mesh refinement iteration, in terms of
arriving at a complete tessellation with all nodes determined, tessellation connectiv-
ity prescribed, and surface values calculated, it is unequivocally the last step of tes-
sellation construction. The next two steps involve the determination of whether new
nodes are to be inserted in the existing tessellation during subsequent refinement
iterations. Should the existing tessellation not require any new nodes the current
tessellation state becomes the final one. Specifically, when no new nodes are added
the algorithm terminates (recall Figure 6) and the tessellation values existing after
this step become the final values returned from the mesh refinement implementa-
tion (see Appendix E for functional arguments and return values).

In addition to kriging at new and existing (moved) node locations, we shall see
that we must also perform the kriging operation during step 5 (accuracy refinement).
Those kriging calculations are used to compare against the interpolated values at
tessellation edge mid-points and triangle centroids to determine if the kriged surface
is accurately represented by the interpolated surface. That process will be defined in
greater detail when accuracy refinement is described in section B-l.6 below. Addi-
tional information regarding the kriging operation can be found in section 2.1.1 and
Appendix A. We are now ready to consider the two node insertion determination
steps; curvature and accuracy refinement. We begin with curvature refinement.

B-l.5 Curvature Refinement (Step 4)

Curvature refinement is performed as a pre-step to the accuracy refinement
determination. It is performed to minimize the number of points that must be inter-
polated during accuracy refinement, which can be computationally expensive. The
mesh refinement implementation has a parameter toggle that can turn curvature
refinement on or off, so a user can construct the tessellation from accuracy refine-
ment decisions alone, if desired (see Appendix E, Section E-3).

Curvature refinement involves examining areas in the surface that are highly
peaked (rough) relative to their surrounding neighbors. These areas are generally
more likely to exceed the relative error requirements since a substantial second
derivative change occurs on the rough nodes (the nodes that lie at the peak). If any
rough nodes are discovered we subdivide each edge shared by the rough node and
save those locations as new points to be inserted into the mesh in the next refine-
ment iteration. At the same time we remove those edges and triangles from consider-
ation in the next step (the accuracy refinement step). This method is fast, and by
selecting the roughness requirement properly, we can reduce the number of edges
and triangles that must be interpolated prior to performing the accuracy require-
ment checks.

Surface roughness is a method of describing the local variability of the data. The
roughness is determined by examining the peakedness of a data point relative to its
natural-neighbors in the tessellation. Specifically, the roughness ri for node i is given
by

89

ri = 1 -A&4,, (EQ B-27)

where Ai is the sum of the areas of the triangles that share node ni and Aip is the
area of those triangles projected parallel to the vector sum of the cross products of
each triangle (i.e. the area of the triangles projected onto the average gradient plane
through node ni). The roughness is zero for a node if all of its shared triangles lie in
the same plane and approaches one for a triangle group with a high peakedness at
their shared node (i.e. the plane of each triangle is nearly perpendicular to the aver-
age gradient). Figure B-5 below depicts a typical shallow peak (low r) and high peak
(large r) commonly found in generic tessellations.

As mentioned above curvature refinement acts as a pre-step to accuracy refine-
ment. If a user so desires, curvature refinement can be turned off. If this is done
accuracy refinement will still produce an accurate grid that meets all stated accu-
racy requirements described in the next section. However, it has been our experience
that the resulting mesh is similar (if not identical) to one generated by combining
both refinement methods with the exception that both methods (curvature and accu-
racy) out-perform the accuracy method alone. This noticeable performance enhance-
ment will generally occur if the curvature refinement criteria (defined as an angle
between two adjacent edges sharing a common node) is specified properly. Generally,
maximum curvature criteria limits of 30 degrees work well with relative error accu-
racy requirements of 10% or less. However, depending on the surface undergoing
refinement, this is not always a hard and fast rule, and some experimentation on the
part of the user may be required to determine an optimum setting.

B-l .6 Accuracy Refinement (Step 5)

The final step in the refinement process is to determine if the current tessellation
approximates the kriged surface within a prescribed accuracy requirement. This
step enforces the primary condition of the entire mesh refinement algorithm. In
order to make this determination we must interpolate and krig at each of the
remaining edge mid-points and triangle centroids where surface roughness require-
ments were not exceeded. To perform the interpolation we use a gradient-modified
NNI scheme. This method, like many other interpolation techniques, uses a
weighted linear combination of the values at a subset of neighbor nodes in the tessel-
lation. The interpolation method is summarized in section 2.3.4 and is discussed in
detail in Appendix D.

Once the necessary locations have been kriged and interpolated using NNI, the
final accuracy test can be performed for each. This test is performed as a relative
error test of the NNI result relative to the kriged value. If those values differ by more
than a prescribed relative amount of the kriged value, then a new node is created for
each failed edge mid-point and marked for insertion during the next refinement iter-
ation. This requirement is defined by

90

(EQ B-28)

P where ZkJntP is the interpolated value at the kth location, Zkkrig is the kriged value
at the k’th location, and E is the prescribed accuracy tolerance.

B-l .7 Discussion

In the previous sections we have seen that mesh refinement involves defining an
initial tessellation that is comprised of a diffuse coarse grid in combination with the
raw surface data as a starting mesh. The initial mesh is input into the iterative five
step algorithm where it is tessellated and where non-fixed nodes are smoothed to
eliminate triangle distortion. The resulting smoothed mesh is kriged at all node loca-
tions to form an NNI basis set and is subsequently tested for curvature and accuracy.
Those areas (edge mid-points and triangle centroids) which do not pass the tests are
split by creating new nodes which are marked for insertion in the next iteration of
the refinement scheme.

Note that we begin with a relatively coarse mesh (typically 1 node per 20 square

31

bl

4

degrees of latitude longitude) and only densifjr the coarse mesh where improved
accuracy is required. However, we have not employed any real optimization tech-
nique to ensure that the number of nodes is minimal. In fact, always adding nodes in
near proximity to triangles almost guarantees that the mesh will be excessively
dense relative to representing the surface to a prescribed level of accuracy. This is
because although each edge of a triangle may show interpolated values that exceed
the relative error requirement they may, in fact, only slightly exceed it such that the
addition and subsequent smoothing of a single node at any one of the edges will ful-
fill the accuracy requirement.

111
Techniques that minimize the node density while refining toward a prescribed

accuracy do exist (Hoppe, 1995). They typically utilize a penalty function within the
framework of a global mesh energy optimization scheme. The penalty function forces
the node number to a local minimum while the accuracy requirement necessitates
increasing nodal density to meet its requirements. The two functions together in an
energy minimization scheme serve to optimize a tessellation relative to both mini-
mizing node density and achieving a relative accuracy criteria. While both elegant
and effective toward meeting their respective goals, we felt that such a method
would be excessive for the first installment of the mesh refinement algorithm. Cur-
rently, we feel that the likely small decrease in mesh density doesn’t adequately jus-
tify the necessary development time required to implement the algorithm. However,
we may pursue this solution in the future.

1411

In the next section we shall discuss the effect of accurately representing multiple
surfaces on an individual tessellation. Multiple surface representation is necessary
to fully exploit the access methods used by libKI31 to retrieve data from the Kbase
(See section 2.3.2).

91

B-2 Multiple Surface Representation

Although the refinement algorithm design implies single surface refinement, by
using existing refined tessellations as input (step 0) into the primary five step refine-
ment scheme, other surfaces can also be represented on a single tessellation. For
multiple surfaces the algorithm is executed for each consecutive surface using the
final mesh calculated for the previous surface as the initial mesh for the next sur-
face. In this way, the necessary mesh density (accuracy) for all previously calculated
surfaces is maintained.

As each new surface is added to the mesh the nodal density increases. But, as
more and more surfaces are added fewer new nodes are required to meet the accu-
racy requirements since much of the new surface is already covered with an ade-
quately dense mesh. However, It is important to note that supporting multiple
surfaces on a single tessellation will always over densifjr (over refine) the tessellation
relative to any one surface used to develop the tessellation. This is because each sur-
face has different regions within which surface variation is maximum. So, where one
surface requires increased mesh density to be accurately represented by the NNI,
another may have very little variation in that particular area and could have been
accurately represented locally with far fewer nodes. The method always guarantees
that all surfaces meet the prescribed relative error accuracy criteria everywhere,
however, they may possess enhanced accuracy in arbitrary regions throughout the
range of the tessellation.

At first glance the major drawbacks to this increased densification would appear
to be computational performance. However, it is easy to show that multiple surface
representation actually enhances overall performance when client applications
access and calculate interpolated values. There are several reasons that lead to this
performance benefit and to fully understand them requires that we first examine
exactly where imagined performance penalties might occur. Performance penalties
could occur in two areas. The first involves a perceived notion that necessary data
per tessellation will increase with an accompanying increase in computer resources
(memory) required to store the extra data. The second concerns the notion that the
time to compute containing triangles (the walking triangle search algorithm) will
increase per tessellation due to the increased nodal density.

We don’t have to consider NNI as a possible performance bottleneck relative to
multiple surface support. This is because we know the NNI performance will be
equivalent per tessellation since it is a local method and is insensitive to mesh den-
sity once it is initialized with a containing triangle. So the problems with multiple
surface support would appear to involve the increased magnitude of data access and
subsequent storage, and a performance degradation in the walking triangle search
due to the increased nodal density. In fact, it is true that both problems will degrade
performance, but, and this is important, the degradation occurs on a per tessellation
basis only. One should realize that representing multiple surfaces on individual tes-
sellations reduces the total number of required tessellations to support all surfaces.

92

Therefore, we need to consider the effects of over densification on a per surface
basis which is related to how libKB1 clients pose their requests to 1ibKBI. What is
the difference in total nodes accessed from individual surfaces, each contained by its
own tessellation, to the total nodes accessed from a single tessellation that supports
all of the same surfaces? In Figure B-6 we show examples of five surfaces that are fit
to the same tessellation at a prescribed relative accuracy of 5%(the surfaces are
shown top-down where dark red areas represent regions of positive surface variation
and dark blue areas depict regions of negative surface values). Individually each of
the surfaces shown in Figure B-6 can be refined (to within 5% relative error of the
original kriged surface) to approximately 2000 nodes and 4000 triangles. This adds
to a total representation of about 10000 nodes and 20000 triangles for all five sur-
faces combined. Figure B-6 shows the final tessellation after adding all five surfaces
to a single tessellation. Observe that the final tessellation contains approximately
4000 nodes and just over 7000 triangles. This means the total savings in nodes and
triangles, for this example, is a factor of 3 to 4 when multiple surfaces are refined to
a single tessellation. In general, when multiple spatially overlapping surfaces are
added to a single tessellation one can expect a savings on the order of the number of
surfaces (minus 1 or 2) attached to the tessellation as compared to the case where
each surface is defined on its own tessellation.

This result implies that relative to data access and retrieval, multiple surface
representation can significantly reduce the necessary data required to define the
surfaces within the libKE31 environment. Now consider the possible performance deg-
radation that the walking triangle algorithm might experience as a function of”
increased nodal density due to multiple surface representation. Recall from section
2.3.3 that the walking triangle algorithm possesses an average search time that is
proportional to the square root of the number of triangles in the tessellation. This
means that if we have, say m surfaces, each assigned to a separate tessellation Cm
tessellations) then the total search time (t single) required for all m surfaces is

t.single = mcJT ,

Y where c is a proportionality constant and T is the average number of triangles in
each tessellation which we assume to be approximately equivalent.

Now consider the case where one tessellation is used to represent all m surfaces.
In this case only one containing triangle search is required but the number of nodes
in the tessellation is larger than any one tessellation defined previously that con-
tained a single surface. For purposes of conservatism lets assume that the multiple
surface tessellation contains mT triangles. This is extreme conservatism since we
know that the tessellation will barely double even after five surfaces are added as
illustrated in Figure B-6 above. However, even if our conservative assumption were
true then the search time for the single tessellation that represents all m surfaces
would be

93

J

t multiple = c&T , (EQ B-30)

which says that tsingle takes & times as long as tm,ltiplee In reality the actual perfor-
mance increase for the multiple surface representation method would be much
greater since we know that the true tessellation triangle density is much less than
mT.

Lastly, recall that the NNI method was not affected by triangle density since it is
a purely local procedure and is insensitive to mesh density on a per tessellation
basis. However, what effect might the number of tessellations have on NNI perfor-
mance? As was briefly described in section 2.3.4, and is detailed in Appendix D, the
NNI method involves a weight calculation to determine an interpolated result.
Although the weight calculation is density insensitive it must be performed for every
individual tessellation. This means that the time to perform all NNIs where each
surface is contained by a unique tessellation is proportional to m, to borrow from the
example above. On the other hand, a multiple surface representation tessellation
only requires a single weight calculation which means that single surface represen-
tation takes m times as long as multiple surface tessellation representations.

Thus, it is apparent that the multiple surface representation is always the most
computationally efficient method and, in addition, requires fewer memory resources
than does the case of a single surface per individual tessellation representation.

B-3 Relative Error Effects On Mesh Density

Unlike the multiple surface representation where a definite benefit is received in
return for increased mesh density, decreasing the prescribed refinement error
(increasing accuracy) results in increased nodal density with an accompanying
decrease in computational performance. There is little choice, however, if one needs
to more accurately match the actual kriged surface. Just how much accuracy is
enough for a particular surface (or group) and how does the increase in accuracy
affect node density (performance)?

The answer to the first question involves knowledge of how accurately the kriged
surface is known. Typically, the kriged surface is known to the precision of the raw
data used to produce the kriged surface to begin with. For example, if the kriged sur-
face is known everywhere to within 10% of the values specified on the raw data then
a subsequently constructed refined mesh possessing a relative error of 10% will, at
most, reduce the final precision by 1% (10% of 10% is 1%).

As we shall see below, the actual average relative error across the tessellation
tends to be about l/2 of the prescribed relative error criteria. So in reality, we can
actually do much better than the example presented above. In general, prescribing
relative error accuracies much less than that of the actual raw data does not buy

94

much in terms of real accuracy relative to the final result. However, increased accu-
racy definitely effects the number of nodes required to support the requirement. Fig-
ure B-7 illustrates the effects of the relative error criteria on mesh density. The
example in the figure shows the result of performing mesh refinement on the same
surface at three different relative error accuracy criteria of lo%, 5%, and 2.5%.
Notice that the node density can increase considerably in areas of high surface cur-
vature that include regions near surface peaks and their respective bases. On aver-
age, halving the relative error essentially doubles the numbers of nodes and
triangles comprising the refined tessellation.

B-4 Summary

The mesh refinement process is accomplished using a five step algorithm to den-
sirjr an initial coarse grid representation of a kriged continuous surface to a pre-
defined level of accuracy. The resulting method is capable of refining many surfaces
onto a single tessellation. This multiple surface representation on a single tessella-
tion reduces the overall data access and subsequent data storage requirements and
enhances performance by improving search times in the walking triangle algorithm.
Finally, the method is capable of providing an arbitrary level of user defined accu-
racy. However, the prescribed magnitude of the chosen relative error criteria should
account for the magnitude of the raw data accuracy of the surfaces that the refined
mesh will represent and any performance degradation associated with the use of
highly accurate (< 5%) surfaces.

95

(This page intentionally left blank) ,

Corner Nodes

QD Interior Nodes

Figure B-l. Initial Mesh Construction (Step 0)
Diagram of a typical initial mesh. Corner nodes are restricted from movement dur-
ing the refinement process. Boundary nodes are,free to move along their defining
axis. Interior nodes are free: to move everywhere. Data nodes are fixed and never
move throughout the refinetient process

91

l Excessive l Excessive
Curvature Error

@ Fixed Data

a) Pre-Node Insertion

b) Post-Node Insertion

Figure B-2. New Node Insertion And Tessellation (Step 1)
A typical tessellation iteration is depicted illustrating a mesh before node insertion
with new node locations marked (a), and immediately following node insertion (b).
The new nodes come from the previous curvature and accuracy refinement steps (4
and 5). The fixed data nodes are also shown for clarity.

I

98

Initial Mesh

l nj = neighbor nodes

Smoothed Mesh

l ni = smooth node

Figure B-3. Length-Weighted Laplacian Smoothing (Step 2)
(left) A set of unsmoothed nodes, (right) the same set of nodes after the center node is
smoothed

99

0 Fixed Data

a) Post-Node Insertion

b) Post-Smoothing

Figure B-4. Smoothing (Step 2)
A typical smoothing operation is depicted illustrating the mesh immediately after
node insertion (a), and immediately following smoothing (b). Notice that all fixed
data nodes have not moved.

Shallow Peak (low roughness) Steep Peak (high roughness)

4/ Avg. Grad. Normal ----+ c

AA II Triangle Group,

ag le Normalsa

l neighbor nodes
l rough node

\

Figure B-5. Triangle Group Surface Roughness
(left) A triangle group that lies essentially in the plane of the groups average gradi-
ent, (right) A triangle group that lies largely out of the plane of its average gradient.

101

Surface Mesh Surface & Mesh

Surface 1
1932 Nodes
3845 Triangles

Surface 2
2741 Nodes
5463Triangles
(1618 Additional

Triangles)

Surface 3
3286 Nodes
6553 Triangle!
(1090 Additional

Triangles)

Surface 4
3460 Nodes
6901 Triangle;
(348 Additional

Triangles)

Surface 5
3593 Nodes
7167Triangh
(266 Additional

Triangles)

Figure B-6. Multiple Surface Representation On A Single Tessellation
Five surfaces are fit to a single tessellation resulting in approximately a doubling of
node and triangle density.

Mesh

Mesh &
Surface

Absolute
Different

Error

10% Rel. Error 5% Rel. Error
876 Nodes 2072 Nodes
1734 Triangles 4125 Triangles

2.5% Rel. Error
3789 Nodes
7558 Triangles

:e

Figure B-7. Relative Error Effect On Mesh Density
In general, mesh node density is inversely proportional to the magnitude of the rela-
tive error from which the mesh is refined. The example above illustrates that halving
the relative error essentially doubles the numbers of nodes and triangles comprising
the refined tessellation. Also, notice that the relative error distribution (the last row
of figures) has an average value that is always about half of the relative error crite-
ria. This is caused by over-densification as described in sections B-2 and B-3.

(This page intentionally left blank)

104

Appendix C: Walking Triangle Search Algorithm
In order to proceed with Natural-Neighbor Interpolation (NNI) we must be able

to find the triangle in a given tessellation that completely contains the requested
interpolation point. Various methods for rapidly accessing the containing triangle
were discussed in section 2.3.3 and reasons for selecting the walking triangle algo-
rithm (Lawson, 1997 or Sambride, 1995) were given. In this appendix we will
develop the methodology behind the algorithm and define a minor variation required
to perform the search within an arbitrary mesh prescribed on the surface of a sphere.

The walking triangle technique commences by selecting an initial triangle from
which tests are conducted to find whether the location of interest lies to the left or
right of each edge of the triangle. Each edge of the triangle is treated in succession. If
the point falls to the left of an edge, the next edge of the triangle is subjected to the
same test. If the point falls to the right, however, the search shifts to the triangle to
the right and the process is repeated. Ultimately the containing triangle will be
detected when the search point tests left for all three edges of a triangle (i.e. the
point is “contained”). In order to accomplish this search we must be able to define
what it means for a point to be left or right of a triangle edge. In turn, specifying the
concept of spatial ‘leftness” and “rightness” requires that a strict triangle edge
ordering arrangement be maintained.

Figure C-l illustrates this arrangement for two example triangles that share one
of their respective edges. Each edge’s direction is defined as counter-clockwise (ccw)
around the triangle. A clockwise directional definition would have worked just as
well, but the important point is that the definition must be applied consistentZy
throughout the tessellation. This means that shared edges between two triangles, as
depicted in Figure C-l, have a different direction depending on which triangle is
using the edge. So, in the paragraph above when we said that edges of triangles are
tested sequentially to determine if a search point lies to the left or the right of one its
edges, that means that the edge being tested carries the proper ccw direction relative
to the current test triangle.

Now that we know that triangle connectivity is defined by a relative ccw edge
ordering, we can define what is meant by “leftness” and “rightness” of a search point
relative to an oriented edge. Figure C-2 shows two diagrams, one where the search
location is outside the boundary of a triangle, C-2 a), and another where the search
point is contained by the triangle, C-2 b). The “leftness” or “rightness” of a point is
determined by placing oneself at the beginning node of an edge and facing in the
direction of the ccw oriented edge. For example, stand at node no and look in the
direction of node nl. Notice that the search location lies to “your” (the edge’s) left.
This is also true for the third edge in either diagram (node n2 directed to no). The
second edge (node nl to n2), however, has the search point to its right side in the first
diagram (a) while it is still to its left side in the second diagram (b). From these
observations we can define the condition for containment of a search location by a
triangle. A triangle is said to “contain” a point if all of its edges, oriented in a ccw

105

fashion, see the point to their “left” side. A point is not contained if any of a triangle’s
ccw ordered edges see the point to their respective “right” side.

We are now able to define a more mathematically rigorous definition of the con-
cepts of “leftness” and “rightness” suitable for implementation within a software
algorithm. Figure C-3 shows a directed edge that resides between two separate
search locations. The plane that contains the directed edge and the vector normal to
the diagram (commonly defined as the z coordinate vector for cartesian planar prob-
lems) divides the 2D Cartesian space into a “right” side (red in the diagram) and a
“left” side (green). The vector from the beginning node of the directed edge (no) to its
ending node (nl) is (nl - no), and the vector from the beginning node to the search
point (SP) is (SP - no). The cross product of these two vectors will be negative, if the
point is left of the directed edge, and positive, if the point is right of the directed
edge. Mathematically we can write

(SP-n())x(npzpO, (EQ C-1)

as the condition for “leftness” of a directed edge relative to some search point. The
order of the vectors in the cross product is important; if they are switched the ine-
quality switches. If a point lies exactly on the edge it is assumed to test “left”. This
means that the first triangle tested that contains a point exactly on it’s edge will be
determined as the containing triangle. Since either triangle technically contains the
point it is irrelevant which one is actually selected for containment.

The result of a typical triangle walk using the concepts described above is illus-
trated in Figure C-4. The figure depicts the triangle walk for an example tessella-
tion, search point, and initial “guess” triangle, as a series of edge tests until the
containing triangle is found. The edge tests begin with any arbitrary edge of the ini-
tial “guess” triangle. Each edge is tested for ‘leftness” or “rightness”. In diagram 1) of
the figure the first test shows the search point residing to the “left” of the edge. If an
edge tests “left”, the next edge, proceeding ccw about the triangle, is tested. In the
second edge test of the initial triangle the edge test shows the search location as
residing “right” of the edge. Any time a search location is found to lie to the “right”
the edge is “jumped” to the adjacent triangle that shares the edge just tested. This
“jump” effectively moves us closer to the search point. Once the jump is performed
the new triangle would find the opposite test result (“leftness”) from the shared edge
if the edge test were performed again. Recall from Figure C-l, this occurs because
the direction of the shared edge must be reversed to maintain ccw behavior in the
new triangle. Since the previously tested edge now tests “left” it need not be retested.
Therefore, the next edge, adhering to the ccw edge order of the new triangle, is
selected for the next edge test.

This process continues until two successive edge tests in the same triangle test
“left”. Since the edge that was jumped must test “left”, two successive edge tests in

106

.-
5111
4

the same triangle means all edges test “left”, and therefore, the triangle must con-
tain the search location. From this description we can assemble a simple algorithm
that defines the walking triangle technique. This algorithm consists of a main func-
tion, triangZe_waZk, that takes the search location and an initial “guess” triangle as
arguments, and a testing function, waZk_edge-test, that takes the current edge and
triangle objects as arguments and returns a flag indicating “left” or “right” and
updated current triangle and edge objects. Triangles, edges, and nodes are treated as
objects in the pseudo code, which for purposes of this discussion, implies that at any
point in time they represent a single triangle, edge, or node, respectively, and contain
all necessary information concerning associated connec&ity and neighbor objects.
With this in mind the walking triangle algorithm is given as

triangle-waik(sp, init_triutgle)
{

assign current triangle, ct, to initJriangle
find first edge from ct such that the search point, sp, lies to the “left”
assign the first “left” edge to the current edge, ce

do forever
t

if (walk-edge-test& ct, ce) = “LEFT”)
{

if (walk-edge-test(.sp, ct, ce) = “LEFT”)
I

ct is containing triangle
exit and return ct

1
I

I
I

walk-edge-test&, ct, CC)
t

get next ccw edge of current triangle, ct, and assign to current edge, cr
perform ULeft” / (‘Right” edge test (result in tst)
if (tst = “RIGHT”)
i

jump: assign the current triangle, ct, to the adjacent triangle that shares the current edge, ce
return ‘RIGHT” (and updated ct and cr objects as arguments)

1
else
t

return “LEFT” (and updated ce object as an argument)
I

The last point to consider before leaving this discussion concerns the representa-
tion of a tessellation on a sphere and the subsequent modification required to prop-

107

erly perform the triangle walk on a 3D surface. Fortunately, the modifications are
simple and are restricted to a single aspect of the discussion above, namely the
mathematical test required to determine “leftness” and “rightness”. For the case of a
spherical surface, “leftness” and “rightness” are defined about an arc that passes
between two nodes. The arc is a spherical triangle edge that is defined on a great-cir-
cle that contains the two nodes and is directed along the path of the great-circle from
the beginning node to the ending node. This representation is illustrated in Figure
C-5 where the beginning node is defined as no and the ending node is nl. If we calcu-
late the normal vector of the great-circle we find a common basis from which to per-
form the ‘left” / “right” test. By measuring the angle between the search point vector
(SP) and the great-circle normal we can determine whether the search point lies to
the “left” or the “right” of the great-circle. As shown in Figure C-5, if the angle is less
than 90 degrees (the green search point) the search point will lie to the “left” of the
great-circle containing the test edge, while angles greater than 90 degrees (the red
search point) mean that the search point lies to the “right” of the great-circle. Or in
other words, if the dot product of the search point vector with the great-circle normal
vector is >= 0 (cos of the angle is less than 90 degrees) then the search point lies to
the “left” of the great-circle relative to the orientation of the triangle edge,, otherwise
it lies to the “right”. Mathematically the spherical surface “leftness” criteria is writ-
ten as

SP.(noXnl)20) (EQ C-2)

This calculation assumes that the nodes and search point vectors are defined on the
unit sphere and that the great-circle normal vector is also normalized before calcu-
lating equation C-2. Search points that lie exactly on the great circle test “left” as
was analogously described for the planar case.

In summary the walking triangle technique provides a simple method of convert-
ing an otherwise costly searching mechanism into a highly efficient location algo-
rithm. The technique utilizes simple triangular mesh connectivity arrangements
coupled with trivial geometric vector observations to produce a workable definition of
the concept of search location direction and triangle containment. The method is eas-
ily implemented within planar Cartesian geometry, and with minor modifications,
also supports spherical surface geometry.

II
:

108

Shared Edge
\

-
al

Nodes

Counter- Clockwise
Edge Sense

Figure C-l. Triangle Connectivity And Edge Orientation
Triangles are connected by three edges using a node order that is counter-clockwise
(ccw) relative to the an outward pointing normal from the triangle face. The shared
edge between two triangles has a different directional sense depending on which tri-
angle is viewing the edge. The direction of a shared edge is always defined relative to
a triangle such that the ccw edge ordering of the triangle is preserved.

Point

ptoLEFT no

a) Search Point (SP)
NOT Contained

a
n1

SP

S&o LEFT n0

b) Search Point (SP)
Contained

to LEFT

Figure C-2. Search Point “Left” / “Right” Classification
In diagram (a), the Search Point (SP) lies outside the triangle. This is determined by
noting that one of the edges (nl to n2) shows the SP to its “right” relative to its direc-
tion.In diagram (b), the triangle contains the SP because the SP lies to the left of all
of the triangles ccw directed edges. -

ml .--
m 109

(<j (jj
Figure C-3. Edge Criteria For Search Point “Leftness” Or “Rightness”
Mathematically rigorous definitions of “leftness” and “rightness” for planar Cartesian
directed edges can be found by defining the vector from the beginning node of a
directed edge (no) to its ending node (n
node to the search point (SP). The 1

>, and the vector from the edges beginning
resu ting cross product of (SP - no> with (nl - no>

will be negative, if the point occupies a position to the “left” side of the directed edge,
and positive, if the point resides to the “right” of the directed edge. Points that lie
exactly on the edge are assumed to test left (c=>. Technically either triangle that
shares the edge upon which the search point lies can contain it.

110

1) (Begin) Left

4) Right (Jump)

7) Right (Jump)

A “Guess” Triangle

A Walk” Triangle

A X Current Triangle

A Containing Triangle

0 Search Point

Oriented Edge

2) Right (Jump) 3) Left

5) Right (Jump)

8) Left

IO) Left

6) Left

9) Right (Jump)

11) Left (bound)

Figure C-4. Walking Triangle Example
This sequence of operations illustrates the walking triangle algorithm. The walk
begins at an initial “guess” triangle and tests triangle edges in a counter-clockwise
(ccw) sequence. If the search point is to the “left” of the ccw edge, the next edge is
tested, if to the “right”, a jump into the adjacent triangle is performed. Two succes-
sive “left” tests determine the containing triangle.

111

(/) ’ (1)
Figure C-5. Spherical Surface ‘Deftness” and “Rightness” Test
On the surface of a sphere, the“leftness” and “rightness” are defined about an arc
that passes between two nodes. The arc is a spherical triangle edge that is defined on
a great-circle (the red shaded circle) that contains the two nodes (no and n) and is
directed along the path of the great-circle from no to nl. The dot product o t the
search point vector (SP) with the great-circle normal produces an angular measure
(cosine of an angle) that, if positive, categorizes the search point as residing “left” of
the great circle relative to the triangle’s edge orientation. Similarly, a negative result
implies the search point lies to the “right” of the great-circle. This calculation
assumes the nodes and search point are defined on a unit sphere and that the great-
circle normal is normalized. Search points that lie exactly on the great circle test
“left” as was analogously described for the planar case.

112

Appendix D: Gradient-Modified Natural-Neighbor
Interpolation

In section 2.3.4 we discussed the strengths and weaknesses of various interpola-
tion schemes and described how the Natural-Neighbor Interpolation (NNI) scheme
was selected because it best satisfied the requirements set forth for the parametric
grid interpolator. In this appendix we will develop the methodology behind the
scheme including the gradient modification that ensures first and second order dif-
ferentiability at all tessellation node points.

Recall from section 2.3.4 that NNI is defined as a local weighted average interpo-
lation method which possesses the following form in two dimensions

f(%Y> = i W&Y).&) (EQ D-1)
i= I

where i is summed over all “natural neighbors” that surround the interpolation point
(x, y), 4 is the function value at the nodes, and wi(x, y) are the normalized “influence”
weights attached to neighbors (each i) that influences the interpolation result at (x,
y). Defining the methodology behind the determination of the neighbor nodes and
their weights for an arbitrary interpolation point within an existing tessellation will
be the primary topic in this appendix until the last section.

In the first section below we will discuss the method for determining the Natural-
Neighbor (N-N) nodes, edges, and triangles of an arbitrary interpolation point.
Recall that these neighbors are found by utilizing the “incremental” insertion algo-
rithm described in section 2.1.2 to treat the interpolation point as if it were a new
node to be inserted into the tessellation. This procedure gives us the N-N nodes,
edges, and triangles and allows us to define the interpolation point’s “insertion poly-
gon” which represents a collection of edges that form an enclosing convex polygon
containing the interpolation point.

Armed with this information we shall proceed to describe the weight calculation
by first examining the Delaunay tessellation’s dual representation, the Voronoi dia-
gram (Voronoi 1908). We shall see that the vertices of the dual Voronoi representa-
tion are actually the centers of the tessellation’s triangle circum-centers. Recall that
the circum-center of a triangle is a circle that uniquely passes through all three of its
nodes. We will also find that the “fictitious”, or virtual, triangles formed from the
assembly of each N-N boundary edge with the interpolation point will possess cir-
cum-centers that represent Voronoi vertices of the “fictitious”, or virtual, Voronoi
polygon defined for the interpolation point. Finally, we shall see that the ratio of
areas of the virtual Voronoi polygon to the Voronoi polygons of each N-N node give
the necessary weights for equation D-l above.

113

Lastly, we will inspect the behavior of equation D-l when differentiated and eval-
uated on the nodes of the tessellation. This inspection will reveal that the linear
form of NNI, while robust, continuous, and stable throughout the tessellation, is not
differentiable at the node points. We will then examine a modification that utilizes
the slope of the gradient planes of the N-N triangles to force differentiability at the
node points. Accounting for the neighbor gradients at the interpolation point is
termed the Gradient-Modified (GM) NNI.

D-l Natural-Neighbor Determination

In order to calculate the NNI weights for an arbitrary interpolation point we
must first determine the appropriate set of N-N nodes, edges, and triangles. For NNI
this set is defined as the N-N’s of the interpolation point if it were inserted into the
tessellation. This means that we need only use the Delaunay “insertion” prescription
illustrated in section 2.1.2 to locate the N-N set of the interpolation point. It is
important to understand that the interpolation point is not actually inserted into the
tessellation. Instead, the resulting properties retrieved from a tessellation that con-
tains the interpolation point are used in conjunction with properties from the origi-
nal tessellation to precisely calculate the N-N objects and their associated weights.
We shall demonstrate this process using an example tessellation and interpolation
point. This same example will be used exclusively throughout the remainder of this
appendix.

Figure D-l a) depicts the example tessellation and the representative interpola-
tion point. Also shown is the containing triangle which is found from the triangle
walk algorithm, and which is necessary to begin the N-N determination. Figure D-l’
b) shows the circum-circles of all the surrounding triangles that share any of the
three nodes of the containing triangle. Of this set, those that enclose the interpola-
tion point will become the N-N triangles and their respective nodes will become the
N-N nodes. Notice, that there are only three triangles and five nodes that belong to
the N-N set for the example interpolation point. Generally speaking, 4 to 6 N-N tri-
angles is typical regardless of the location of the interpolation point relative to the
Voronoi diagram.

The resulting five N-N nodes in the example are connected by edges that com-
pletely enclose the three N-N triangles. These edges are referred to separately as N-
N edges, enclosing boundary edges, or simply boundary edges. The same edges are
referred to as the enclosing polygon when they are referenced as a group. Each
boundary edge is shared by one N-N triangle and another triangle that is not in the
set of enclosing N-N triangles. Similarly, edges that are shared by adjacent N-N tri-
angles are called shared edges. Figure D-2 a) illustrates the concepts of boundary
and shared edges for the example tessellation/interpolation drawing given in Figure
D-l.

The direction of the enclosing polygon’s edges are always prescribed in a counter-
clockwise (ccw) direction (see Appendix C for a discussion of ccw direction). Doing so

114

preserves the ccw sense of all edges, boundary and shared alike, owned by the N-N
triangles. All N-N nodes have exactly two N-N boundary edges that they share. One
edge ends on the particular N-N node in question while the other boundary edge
emanates from it. The edge that ends on a N-N node is termed the pre-edge while the
edge that emanates from a N-N node is called the post-edge. Note that all boundary
edges of a N-N enclosing polygon serve as a pre-edge for one N-N node and post-edge
for another. This definition is relative to the N-N node being referenced. Figure D-2
b) shows the pre- and post-edge assignment for nodes in the example tessellation.
The concepts of pre- and post-edges will be used later when we define the weight cal-
culation algorithm at the end of the next section.

Before we leave the discussion of N-N determination we should briefly examine
the result of continuing with the “fictitious insertion” of the interpolation point into
the tessellation. Recall from section 2.1.2 that once the enclosing polygon is defined
one may remove the N-N triangles, which in effect is the same as removing the
shared edges depicted in Figure D-2 a), and insert new triangles that connect the N-
N nodes with the new node. In this case the new node is our interpolation point and
we really never create the new triangles. They are virtual constructs used solely to
extract additional information required to complete the N-N weight calculation. Fig-
ure D-3 shows the virtual triangles that connect the interpolation point with the N-N
boundary nodes.

D-2 Natural-Neighbor Weight Determination

Having finished with the discussion concerning the determination of natural-
neighbor nodes, edges, and triangles we are ready to explore the means by which the
N-N weights are calculated. To do this requires that we explain the dual representa-
tion of the Delaunay tessellation, the Voronoi diagram (Voronoi, 1908). The Voronoi
diagram is a geometric method for defining spatial proximity of an arbitrary collec-
tion of points (the nodes in the tessellation to use our example). Each point in the set
(the nodes) is uniquely associated with a single representative convex polygon called
a Voronoi polygon. Each edge of the Voronoi polygon is called a Voronoi edge and cor-
responds to an edge of a triangle. Also, each vertex of the Voronoi polygon is called a
Voronoi vertex and corresponds to a single triangle in the example tessellation. The
ensemble of all such polygons for the entire tessellation is called the Voronoi diagram
of the tessellation. The Voronoi diagram has an extensive list of important properties
and the reader is directed to (Preparata, 1985 and O’Rourke, 1994) for a detailed dis-
cussion. For our purposes only the construction of the Voronoi diagram and its rela-
tion to the Delaunay tessellation is important.

A specific Voronoi polygon can be constructed by passing a perpendicular line
through the midpoints of the edges shared by a specific node in the Delaunay tessel-
lation. The intersection of those lines form the vertices of the Voronoi polygon. Recall
that those vertices are associated with exactly one triangle of the tessellation and, in
fact, represent the circum-centers of the circum-circles that inscribe each triangle.
Figure D-4 a) illustrates the Voronoi diagram for our example tessellation. The three

115

containing N-N triangles from Figure D-l b) are drawn with their circum-circles
illustrating their relationship with the Voronoi vertices.

The calculation to evaluate the weights requires that we determine the virtual
Voronoi polygon created by the “fictitious” insertion of the interpolation point into
the tessellation. The resulting insertion is depicted in Figure D-4 b). Notice that the
“fictitious”, or virtual, Voronoi polygon has five edges and five vertices. The edges cor-
respond to the five new virtual edges added to connect the interpolation point with
the N-N nodes. The five virtual Voronoi vertices correspond to the five additional vir-
tual triangles circum-centers.

The weights for each N-N node are determined by calculating the amount of over-
lap between the existing Voronoi polygons and the new virtual Voronoi polygon. Fig-
ure D-5 illustrates the resulting overlap with the original Voronoi diagram drawn in
blue and the new virtual Voronoi polygon for the interpolation point drawn in red.
Given that we can now construct the Voronoi diagram of the tessellation and the vir-
tual Voronoi polygon of the interpolation point we are ready to consider the solution
technique used to calculate the weights.

The method used by Sambridge (et. al. 1995) to calculate the areas of the overlap-
ping regions of the Voronoi polygon is the same one defined by Watson (1992) which
essentially sums the overlapping regions as a group of signed triangles. This method
uses the “fictitious” Voronoi vertices (the red circles in Figure D-5), the original
Voronoi vertices (the blue circles), and circum-centers of triangles formed from the
nodes of the shared edges (Figure D-2) combined with the interpolation point, as ver-
tices of component triangles whose proper summation determines the areas of the
individual overlapping areas. Using this method a set of three signed sub-triangles is
formed for each N-N triangle. For our example this constitutes nine separate sub-tri-
angles.

Exploiting some efficient indexing techniques while summing the areas of these
positive and negative sub-triangle areas results in the sought after weight required
by each N-N node. Figure D-6 shows three such sub-triangles, each coming from the
analysis of a different N-N triangle. One of the components is positive (the large
green triangle in the first panel) while the other two have negative areas (the grey
triangles of the second panel). Based on the indexing techniques described in the
Sambridge paper, the three sub-triangles are summed to form the weight for node
n3. Notice that the triangles are constructed by using the circum-centers of triangles
formed between the nodes of the shared edges and the interpolation point (the green
circles in Figure D-6). In general, this method is fast and efficient and will quickly
evaluate the necessary areas (weights) for each N-N node.

Unfortunately, this method is indeterminate when the interpolation point lies
exactly on one of the shared edges of the N-N triangles. When this happens the
nodes of the shared edge and the interpolation point lie on a line and the resulting
circum-center is no longer defined (resides at infinity). When this happens the sub-

116

triangle area is undefined and we are unable to define the necessary weights for
nodes that use the undefined sub-triangle. For the work performed by Sambridge
(finite-element integration) and others this was not a problem as they only interpo-
lated points that were well within the boundaries of each triangle. Unfortunately, for
our application we cannot guarantee that the interpolation point will never lie on a
triangle edge and must, therefore, find another way of determining the necessary
areas.

Since the problem occurs because the shared edges are used in combination with
the interpolation point we propose to calculate the weights without them. We know
we can do this because the magnitudes of the five weights can be completely deter-
mined from the set of Voronoi vertices that define the virtual Voronoi polygon and
the Voronoi vertices obtained from the circum-circles of the N-N triangles. No other
point information is necessary to determine the weights. Now all we need is a pre-
scription for performing the calculation. To do this we need to examine the relation-
ships of the circum-centers with respect to the original tessellation’s N-N triangles
and edges.

Recall that each “fictitious” Voronoi vertex was determined as the circum-center
of a triangle constructed from the two nodes of one boundary edge and the interpola-
tion point. The only unique component of the construction that belongs to the origi-
nal tessellation is the boundary edge. The resulting matching of all of the virtual
Voronoi vertices with a specific boundary edge is shown in Figure D-7. Given an arbi-
trary index for each boundary edge, e;, the matching Voronoi vertex is labeled eui.
Also shown are the Voronoi vertices created from each N-N triangle. These are desig-
nated as ‘uj for the jth triangle. Given these definitions and the definition of the pre-
and post-edge we are ready to examine the algorithm that will yield the N-N node
weights.

In our algorithm we determine the weight assigned to each N-N node in succes-
sion by following the enclosing polygon in a ccw direction. This will involve the deter-
mination of several sub-triangles, similar to the method described above, except that
the triangles are specific components of a particular N-N node weight. To avoid con-
fusing this method with the previous one, and because in a strict sense these are not
sub-triangles of the N-N triangles, we shall refer to the N-N node sub-triangles as
“component” triangles.

This process is illustrated in Figure D-8. The node that we begin with is arbi-
trary. For each N-N node we find it’s pre-edge and post-edge and we take the virtual
Voronoi vertex assigned to the pre-edge and anchor it as the initial point for all sub-
sequent component triangle area calculations. Next, we follow the current N-N
node’s Voronoi polygon in a clockwise direction until we arrive at the Voronoi vertex
of an N-N triangle that has the pre-edge as one of its edges. This will be the second
point of the first component triangle. Finally, we continue to follow the N-N node’s
Voronoi polygon in a clockwise direction until we encounter the Voronoi vertex of the
N-N triangle that shares an edge with the previous N-N triangle. This forms the

117

third point of the component triangle of the N-N node whose weight is being calcu-
lated currently. We can now calculate the area of the component triangle from the
relation

lb3 -PA x (P2-P1)1
2 3 (EQ D-2)

where pi represents the Voronoi vertices described above and are labeled in Figure
D-8 as “17, “2”, and “3”, respectively. Each panel in Figure D-8 shows a particular
component triangle definition. The point labels are ordered such that equation D-2 is
always positive.

The next component triangle for a particular node is found by making the oldp,
be the new p2 and finding a new p3 by continuing the traversal of the node’s Voronoi
polygon in a clockwise direction until the Voronoi vertex of the next N-N triangle
that shares an edge with the previous N-N triangle is found. This point is subse-
quently assigned to point p3. If, however, the next triangle is not a N-N triangle, as is
the case when the edge shared by the previous triangle is a boundary edge (the post-
edge) then we assign p3 to the virtual Voronoi vertex owned by the post-edge. When
this happens we will be calculating the last component triangle for the current N-N
node being processed. This can happen for the first component triangle calculated for
a N-N node, as is shown for nodes n2 and n4 (panels e} and i} in Figure D-S), or after
several component triangles have been evaluated, as is illustrated for nodes no, nl,
and n3. The number of component triangles evaluated for a specific N-N node is
equal to the number of the Voronoi vertices owned by the N-N triangles that are
defined as vertices in the respective node’s Voronoi polygon. For our example, no and
nl have 2, n2 and n4 have 1, and n3 has 3. This fact is unchanged, as one would
expect, from the method (Sambridge et. al.) described above.

Once a particular weight has been evaluated for a specific N-N node we can pro-
ceed to the next node weight calculation. This is done by assigning the previous N-N
node’s post-edge as the current pre-edge, by retrieving the new node’s post-edge and
its associated virtual Voronoi vertex, and by setting the new anchor point, ~1, to be
the old point p3 from the last evaluation (point p2 remains unchanged). We are now
set to continue finding the third point for successive component triangles for the next
N-N node. This process continues until all component triangles for each N-N node
have been determined.

Successive component triangles for a specific N-N node are summed to obtain the
total area of the overlapping region for that node’s weight. The individual N-N
weights are also summed to obtain the total area of the virtual Voronoi polygon. This
is used to normalize each individual N-N node weight. Since the nearest-neighbor
coordinates are normalized they always lie between 0 and 1. This results in the prop-

118

erty that if an interpolation point falls exactly on top of a node the function value of
the node is returned.

-
111 -~
a
ii 41

Given the description above we can assemble a pseudo-code algorithm to evaluate
the N-N node weights. In a similar fashion to the triangle walk algorithm described
in Appendix C, we use the abstraction of node, edge, and triangle objects. These
objects represent a specific instance of a tessellation member. When the term
“update” is mentioned below relative to a specific object (e.g. a triangle) the reader
should interpret the term as referring to the fact that the object instance has been
reset to another object (e.g. the object now refers to the adjacent triangle that shares
an edge with the previous triangle). With this in mind the NNI weight calculation is
given by:

pick the first node in the N-N node list as the current node, cnoclr

get the current nodes (mode) pre-edge as cedge

get the G-cum-center (“virtual t’oronoi vertex”) of cedge as ipl

get the owning triangle of the pre-edge (cedge) and assign it as the current triangle, ctri

get the circum-center of ctri as 432

assign total nodes to be processed to nodecount

rotuIarea = 0

Ioopcouilt = 0

do while (loopcount < nodecount) “looo thru ah K-N nodes”

t
nodearea = 0

do while (cedge is NOT a post-edge of mode) ‘?ooo thru comoonent trianples of current node”

t
get the next ccw edge of ctri, and assign to cedge “cedpe charwe”

get adjacent triangle of ctri across cedge and assign to a@ri

if (adjtri is a N-N triangle) then

s
assign afijti circum-center to ip3

assign ctri to adj*tri “‘ctri chanw ”

l
else

I
cedge is a boundary edge (post-edge of mode), get the circum-center of cedge as ip3

1
perform triangle area calculation between points ip.I, ip2, and ip3, and add to nodearea

ttodearea = no&area -t (ip3 - ipl) x (ip2 - ipl) /2

assign ip2 = ip3

I

119

assign mode weight, cnode.weight = nodearea

increment total area, totalareu = totalarea + nodearea

assign ipl = ip3

assign mode as the opposite node of cedge “mode chance”

iOOpCOUfSt = kOO$fCOUJlt + 1

normalize each n-n node weight by dividing by totalarea

This method of weight calculation has about the same compuational cost as the
Sambridge method described above. The major difference is that this method is con-
nectivity based (e.g. triangles have to know their defining edges and edges have to
know what triangles they share) which requires a couple more decisions that aren’t
always necessary in a purely indexed based technique. On the other hand, the
method no longer requires the use of the shared edge circum-circles and is therefore
a very robust implementation.

D-3 Gradient Modification

Natural-neighbor interpolation produces surfaces that are continuous but not dif-
ferentiable at the node points (Sibson, 1980) (Note: the surface produced by kriging
has similar properties if the measurement error prescribed for a data point is zero).
Since differentiability is a requirement for many of the data sets produced for the
Kbase we use a modified version of natural neighbor interpolation that uses the
slope of the average gradient (Watson, 1992) at each node of the tessellation to
enforce first and second order differentiability. This method forces a slope that is
equal to the gradient of the kriged surface at each of the tessellations nodes. The
method is termed the Gradient-Modified (GM) NNI.

The method requires that the average gradient slope defined at each N-N node be
blended with the linear NNI result. This involves summing the difference between
the linear NNI value and each of the values found on the N-N node’s average gradi-
ent planes evaluated at the interpolation point. Lets call this result the altitude of
the i’th node’s gradient plane, S&x, y) , where x and y are the interpolation point’s
position in 2D. This value can be found from the expression

Si(X, y) = fi + (X-pi),n’i + (Y -yyli)yn’i ’ (EQ D-3)

where fi is the surface value defined at the position of node i, pi and yni are the x
and y positions of the i’th node, and , xn’i and ,,nli are the derivative components of
the average gradient plane that passes through node i.

120

9’
4
sll
II
w
1p

We can now add to the linear NNI result the sum of the differences of the altitude
of the i’th gradient plane with the linear NNI result multiplied by a modifying blend-
ing function that reduces the influence far away from a node and increases the influ-
ence of these differences when the interpolation point draws nearer to a specific node
(the difference operation itself has the ,opposite properties since Si(x, y) becomes
f(x, y) at each node point). The blending function is generally a normalized func-

tion that varies between 0 and 1 and is dependent upon the nodes weight and possi-
bly its surface roughness. The expression for the modified gradient interpolant can
be written as

3 (EQ D-4)
i= 1

where f(x, y) is the linear NNI result and hi(wi, ri) is the blending function that
is defined as dependent on the i’th node’s weight (wi) and surface roughness (r;).

Generally, as a node’s weight tends toward zero the influence of the difference in
the node’s gradient altitude and the linear NNI is reduced to zero. Also, as the nodes
weight moves closer to one, the influence of the difference becomes more important
and. so the blending function’s value also moves closer to one. Figure D-9 shows a
typical blending function as a function of node weight. The influence of the surface
roughness can also be factored in by changing the slope of the blending function for
function values evaluated at high node weights (near 1).

a The overall effect of equation D-4 is to distribute the difference in the slopes
between the estimated gradient and the linearly interpolated basis surface over a
small region about each node point. This is achieved by varying the influence of the

a
gradient from 1 at the node point to zero where the node ceases to be a neighbor of
the interpolation point. This approach causes the solution to be bounded by the lin-
ear basis surface and local trend of the gradient surfaces. The method ensures that

q
the resulting blended surface is smooth everywhere, including the node points.

Figure D-10 illustrates the effect of the gradient modification on the linear NNI

q
method. Panel a) shows a typical highly peaked node using standard linear NNI.
Notice that, although continuous everywhere, the surface is not differentiable at the
node position (differentiability does exist everywhere else, however). Panel b) shows
the same surface after applying the GM method using the blending function shown
in Figure D-9. Notice that differentiability is restored to the node location and the

q

peakedness is reduced to an almost spherical appearance.

The GM variant of NNI provides an inexpensive means of restoring first and sec-

a.

ond order continuity while providing a mechanism for controlling the surface taut-
ness (or peakedness) at each node point. The resulting surface generated by the GM
NNI scheme is extremely general, local in scope, and always stable, regardless of the

q

complexity or sparseness of the data distribution.

121

(This page intentionally left blank)

122

a) Typical Tessellation

Interpolation Point/

Containing Triangle/

b)

0

0

A

L

Triangle Circum-Circle
Containment Of
Interpolation Point

Triangle Circum-Circles
That Do NOT Contain

T The Interpolation Point

Triangle Circum-Circles
That Do Contain The
Interpolation Point y

NiN Triangles

N-N Nodes

Figure D-l. Interpolation Points Natural-Neighbor Nodes And Triangles
The top drawing, a), illustrates a section of a typical tessellation and an interpola-
tion point. The containing triangle is highlighted with red edges. The bottom draw-
ing, b), shows all of the triangle circum-circles that share any of the three nodes of
the containing triangle. Notice, that there are only three triangles and five nodes
that belong to the N-N set for the interpolation point in question.

123

a) Edge Definitions

b) Edge Direction

Node no Pre-Edge___

Node no Post-Edge-

ni pre-edge is ei.1
(cyclic indices apply;
for example pre-edge
of no is ep)

ni post-edge is ei

Figure D-2. Natural-Neighbor Edge Definitions And Ordering
a) This Illustrates the concept of N-N edges or boundary edges that connect the N-N
nodes to form an enclosing polygon about the interpolation point. The boundary edge
can also be defined as an edge that only has one N-N triangle attached. The other tri-
angle is NOT an N-N triangle. A shared edge on the other hand, is shared by two N-
N triangles. b) Edge direction is ordered to preserve counter-clockwise (ccw) direction
for all N-N triangles. Pre-edges and post-edges are defined relative to each node. An
edge is both a pre- and a post-edge for two different nodes. Pre-edges are those that
end on a node, relative to the node, while post-edges emanate from their relative
node.

124

! -
h

/

Figure D-3. Virtual Interpolation Point Triangles
If the N-N triangles are removed the interpolation point can be treated as a new

node to be inserted in the tessellation by connecting the interpolation point as a tri-
angle vertex to each of the pair of nodes that define a separate boundary edge. These
triangles are “fictitious” and are not created. However, the circum-centers from the
circles that enclose each virtual triangle are used in the weight calculation.

125

a) Voronoi Diagram
Without Interpolation
Point Inserted

Voronoi Edges

N-N Triangle
Circum-Centers
(Voronoi Vertices)

N-N Triangle
Circum-Circles- 7 k-

b) Voronoi Diagram
With Interpolation
Point Inserted

Virtual Vorono
Polygon

Virtual Triangle
Circum-Cente

Figure D-4. Voronoi Diagrams With and Without Interpolation Point.
a) Shows the Voronoi diagram for the example tessellation (blue lines). Each polygon
represents a single node from the tessellation. The vertices are the circum-centers of
the circum-circles that inscribe each triangle of the tessellation. The N-N triangle
circum-circles are shown in this panel along with their respective circum-centers. b)
Shows the result of adding the interpolation point as a “fictitious” node to the tessel-
lation. The resulting virtual triangles and voronoi polygon is depicted. The vertices
of the virtual Voronoi polygon (red circles) are the circum-centers of the virtual trian-
gles created when the interpolation point is “fictitiously” inserted into the mesh. The
virtual circum-circles are not drawn to enable a clear view of the virtual Voronoi
polygon.

126

Figure D-5. Nodal Weight Definition: Overlapping Voronoi Polygons.
The respective weights of each of the N-N nodes can be determined from a normal-
ized measure of the relative areas of overlap between the virtual voronoi polygon
(red) and each of the N-N no d es voronoi polygons (blue). Each weight, zui, is shown
with its matching node, ni, above.

127

a) positively defined sub-triangle (green)

b) negatively defined sub-triangles (gre:

Figure D-6. Sub-Triangle Weight Calculation Method
a) The green triangle represents a positively signed sub-triangle developed from the
weight calculation prescription outlined by Watson (1992) and Sambridge (1995). b)
shows two negatively signed triangles (grey). The sum of the three triangles pro-
duces the weight for node n3. The method is indeterminate, however, if the interpola-
tion point should fall on one of the N-N triangles’ shared edges (the green edges). In
that case the circum-circle formed from the two N-N nodes and the interpolation
point is, undefined since the circum-center (the green circles) resides at infinity.

128

Figure D-7. Boundary Edge Matching With Virtual Voronoi Vertices
Each boundary edge can be matched to a specific virtual voronoi polygon vertex. The
specific matching for a boundary edge is defined as the vertex that was created from
the circum-circle of the virtual triangle that was constructed between the specified
edge and the interpolation point. Each boundary edge, ci, owns exactly one virtual
pertex, “u.;. Additionally, each N-N triangle has exactly one circum-center defined by
u . . The virtual polygon voronoi vertices (red) and the N-N triangle voronoi vertices

(bJ1 > ue completely define the geometry of the overlapping voronoi regions.

129

a) no, first component triangle b) no, second component triangle c) nl, first component triangle

-
/-l \ *I \ III \

d) nl, second component triangle .. e) n2, first (only) component triangle f) ng, first component triangle

lir2krD~~
g) n3, second component triangle h) n3, third component triangle i) np, first (only) component triang

l Current Process Node
o N-N Triangle Circum-Centers Shared

By the Current Nodes Voronoi Polygon

-Pre-Edge
o Pre-Edge Circum-Center

-Post-Edge
c Post-Edge Circum-Center

Figure D-8. Natural-Neighbor Weight Determination
The panel sequences illustrate the method of evaluating nodal weights by sequen-
tially following N-N nodes around the enclosing polygon in a ccw fashion. The
weights for each node are the sum of the individual component triangles that form
overlapping areas between the interpolation points virtual voronoi polygon and the
N-N node’s voronoi polygons.

130

Figure D-9. Typical Modified Gradient Blending Function.
Typical GM NNI blending functions vary from 0 to 1 over the node-weight range of 0
to 1. The functions are always monotonically increasing and always have zero slope
at wi = 0. The slope at wi = 1 can vary from 0 to 1 or greater and can, if desired, be
controlled by the nodes surface roughness coefficient. Generally, this is accomplished
by setting the slope to be proportional to the surface roughness.

131

a)
. . ..-- ;....

:-..

.
.

. . . .
/.I...

. . . . * -.. ‘-
.

: :.. . .

.
.

:.. . .-:.
._

W

Figure D-10. Natural-Neighbor Basis Functions w/w0 Gradient
Modification
a) Linear Natural-Neighbor Interpolation (NNI) basis function illustrating non-dif-
ferentiability condition at a node point. b) Same NNI surface changed with the addi-
tion of the Gradient Modification.

132

Appendix E: Matlab Packages
All of the data analysis, kriging, mesh refinement, and binary data file creation

functions are written in Matlab. Though some of the functions could realize signifi-
cant performance improvements if coded in a non-interpreted language (e.g. C or
C++), we have found Matlab to be an excellent software development and research
application environment. The huge library of built in functions, integrated graphics,
and interpreted interface allow us to quickly develop sophisticated prototype func-
tions, which in most cases are not so numerically demanding as to impact perfor-
mance noticeably. Some numerically intensive software components have
performance ranges that are near the limit of what is acceptable. In the future our
intent is to replace these algorithms with substitutes written in C or C++ which will
be bound to the Matlab interface using the Matlab CMEX facilities.

The high level functions are listed below, grouped by purpose.

E-l Variogram Analysis

Functions used for variogram analysis:

l vario-sn1.m - creates plots of the v&iogram and number of pairs per bin for a data matrix.

E-2 Kriging

Functions used for Modified Bayesian Kriging. Numerous sub-functions are also
included:

make-b1end.m - makes a blending function structure (can be used for both blending func-

tions and correlation coefficient functions).

draw-b1end.m - draw general shifted blending function (can be used for both blending

functions and correlation coefficient functions).

krigrand0m.m - Nearest-neighbor Modified Bayesian Kriging for values and errors on an

arbitrary set of grid points (Grid) with boundary segment influence. This function factors in

the influence of measurement error (smoothing) and uses nearest neighbor influence for per-

formance enhancement.

133

l kriguniform.m - Nearest-neighbor Modified Bayesian Kriging for values and errors on a

regular grid (Glat, Glon) with boundary segment influence. This function factorsin the

influence of measurement error (smoothing) and uses nearest neighbor influence for perfor-

mance enhancement.

E-3 Mesh Refinement

Functions used to create the and analyze the optimal tessellation for NNI given a set
of Kriging parameters. Again, many additional subfunctions are included but not
listed here:

.

.

.

.

refine-mesh.m - refine-mesh calculates a refined mesh given 1) an initial grid description

with data and accuracy refinement criteria, or 2) a predehned surface with a valid boundary

description. In the second case a new surface can be fit into an existing grid which meets

accuracy requirements for some set of previously defined kriged surfaces.

draw-krigsurf.m - this function draws the kriged surface and an overlay of the tessella-

tion given in tess-defh on top of the kriged surface.

check-surf.m - this function is used to compare the actual kriged surface with it’s approxi-

mate interpolated surface. The output contains the difference between the two for all points

defined in the lat, lon pairs.

kbi-roff.m - Function kbi-roff constructs the binary Read-Once Flat-File (ROFF) used by

the C-H KE31 code.

134

Appendix F: Locator Parameters for KBI
In order to use Knowledge Base data, additional parameters or specific settings

for existing parameters are needed for the programs that use the libloc package (loc-
SAT and Evloc). Here are the parameters with explanations:

usekbi (default FALSE)
#Use Knowledge Base Interpolation - turn on to access the Kbase; if this is not on,
the other KBI parameters are irrelevant

dist-var-wgt (default FALSE)
#Distance variance weighting - must be turned on to use any kind of a priori error
information, which includes libKB1

num-dof (default 0)
#Number of degrees of freedom - must be set high (e.g. 9999) to get a coverage
ellipse, i.e. an ellipse that reflects the a priori error information,

kb-shape-radius . .
#Knowledge Base shape radius - radius of circle (in degrees) for which to fetch
information from the Knowledge Base

kb-dbtype (default 2)
#Knowledge Base database type - 1 = SDE; 2 = ROFF;

kb-bmodel
#Knowledge Base Base model’ - for correction data

kb-sewer
#Knowledge Base database server - needed if kb-dbtype = 1 @DE)

kb-instance
#Knowledge Base database instance name - needed if kb-dbtype = 1 @DE)

kb-db
#Knowledge Base database name - needed if kb-dbtype = 1 @DE)

kb-usr
#Knowledge Base database username - needed if kb-dbtype = 1 @DE)

kbgpsswd
#Knowledge Base database password - needed if kb-dbtype = 1 (SDE)

kbff-name
#Knowledge Base flatfile name - path and name of Read Only Flatfile (ROFF), if
kb-dbtype = 2

135

(This page intenti&dly left blank)

136

